Publications by authors named "Edward P Browne"

Antiretroviral therapy (ART) has dramatically improved the clinical prognosis for people with HIV and prevents HIV transmission. However, ART does not cure HIV infection because of a persistent, latent viral reservoir in long-lived cells such as central memory CD4+ T (TCM) cells. Eliminating or preventing reservoir formation will require a better understanding of HIV-1 latency establishment.

View Article and Find Full Text PDF

COVID-19 and long COVID are characterized by a dysregulated immune response. However, the role of macrophages during viral infection is poorly defined. Here we demonstrate that SARS-CoV-2 infection results in increased macrophage numbers and extensive formation of enlarged lipid-laden macrophages or foam cells using humanized mice, rhesus macaques and post-mortem human lung tissue.

View Article and Find Full Text PDF

To better understand the molecular mechanism that drives neuroinflammation, we analyzed the protein profiles of 27 brains from HIV with HIV (PWH) on antiretroviral therapy (ART), including various stages of HIV-associated neurocognitive disorders (HAND), and compared them to 9 HAND-negative controls. We found that most of the proteins that were increased-about 66.7%-were involved in immune response pathways.

View Article and Find Full Text PDF

Purpose Of Review: This review outlines current model systems of HIV latency and their analysis with single-cell omics technologies. Previous studies have used bulk analyses of infected cell cultures to determine mechanisms of HIV transcription and to identify targets associated with HIV latency in vitro . However, heterogeneity in cell populations creates a barrier to the effectiveness of latency reversing agents.

View Article and Find Full Text PDF

Entry of HIV into latency is determined by a combination of factors, including fluctuations in the viral Tat protein, as well as the transcriptomic phenotype of the host cell. Determining the impact of the proviral integration site on viral expression has been challenging due to difficulty in measuring integration site and viral expression from the same cell. To investigate the influence of the HIV integration site on HIV expression, we analyzed a combined scRNAseq/scATACseq dataset from 117,610 HIV infected primary CD4 T cells.

View Article and Find Full Text PDF

Cannabis use is prevalent among individuals living with HIV in the United States, but the impact of cannabis exposure on the reservoir of latently infected cells that persists during antiretroviral therapy (ART) remains unclear. To address this gap, we analyzed the effect of Δ-9-tetrahydrocannabinol (THC) on primary CD4 T cells that were latently infected with HIV. We found that THC had no detectable effect on baseline or latency reversing agent (LRA) stimulated HIV expression, or on expression of an activation marker (CD38).

View Article and Find Full Text PDF

Unlabelled: Antiretroviral therapy (ART) suppresses HIV replication but fails to eliminate the virus due to the persistence of a transcriptionally silent reservoir, which remains the primary barrier to a cure. HIV latency is maintained through chromatin-mediated repression, making epigenetic regulators attractive therapeutic targets. To identify new modulators of latency, we screened a focused library of 84 chromatin-targeting small molecules.

View Article and Find Full Text PDF

The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH).

View Article and Find Full Text PDF

Human Immunodeficiency virus (HIV) infection is regulated by a wide array of host cell factors that combine to influence viral transcription and latency. To understand the complex relationship between the host cell and HIV-1 latency, we performed a lentiviral CRISPR screen that targeted a set of host cell genes whose expression or activity correlates with HIV-1 expression. We further investigated one of the identified factors - the transcription factor ETS1, and found that it is required for maintenance of HIV-1 latency in both latently infected cell lines and in a primary CD4 T cell latency model.

View Article and Find Full Text PDF

Despite antiretroviral therapy (ART), people with HIV (PWH) on ART experience higher rates of morbidity and mortality vs. age-matched HIV negative controls, which may be driven by chronic inflammation due to persistent virus. We performed bulk RNA sequencing (RNA-seq) on peripheral CD4+ T cells, as well as quantified plasma immune marker levels from 154 PWH on ART to identify host immune signatures associated with immune recovery (CD4:CD8) and HIV persistence (cell-associated HIV DNA and RNA).

View Article and Find Full Text PDF

The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing towards inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells from people living with HIV (PLWH).

View Article and Find Full Text PDF

Understanding the interplay between the HIV reservoir and the host immune system may yield insights into HIV persistence during antiretroviral therapy (ART) and inform strategies for a cure. Here, we applied machine learning (ML) approaches to cross-sectional high-parameter HIV reservoir and immunology data in order to characterize host-reservoir associations and generate new hypotheses about HIV reservoir biology. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and measurement of genetically intact and total HIV proviral DNA frequencies were performed on peripheral blood samples from 115 people with HIV (PWH) on long-term ART.

View Article and Find Full Text PDF

Unlabelled: Human Immunodeficiency virus (HIV) infection is regulated by a wide array of host cell factors that combine to influence viral transcription and latency. To understand the complex relationship between the host cell and HIV latency, we performed a lentiviral CRISPR screen that targeted a set of host cell genes whose expression or activity correlates with HIV expression. We further investigated one of the identified factors - the transcription factor ETS1 and found that it is required for maintenance of HIV latency in a primary CD4 T cell model.

View Article and Find Full Text PDF

The HIV reservoir is more dynamic than previously thought with around 70% of the latent reservoir originating from viruses circulating within 1 year of the initiation of antiretroviral therapy (ART). In an model system of HIV latency, it was reported that early exposure to class I histone deacetylase (HDAC) inhibitors might prevent these more recently infected cells from entering a state of stable viral latency. This finding raises the possibility that co-administration of HDAC inhibitors at the time of ART initiation may prevent the establishment of much of the HIV reservoir.

View Article and Find Full Text PDF
Article Synopsis
  • Despite advances in antiretroviral therapy, HIV remains incurable due to the presence of latently infected cells that escape treatment.
  • Researchers used advanced techniques like single-cell RNA sequencing and chromatin accessibility profiling to study around 125,000 of these cells and how they reactivate.
  • They found key transcription factors related to viral reactivation and created a machine learning model that accurately predicts this reactivation while validating the roles of specific factors, FOXP1 and GATA3.
View Article and Find Full Text PDF

Understanding the mechanisms that drive HIV expression and latency is a key goal for achieving an HIV cure. Here we investigate the role of the SETD2 histone methyltransferase, which deposits H3K36 trimethylation (H3K36me3), in HIV infection. We show that prevention of H3K36me3 by a potent and selective inhibitor of SETD2 (EPZ-719) leads to reduced post-integration viral gene expression and accelerated emergence of latently infected cells.

View Article and Find Full Text PDF

Although antiretroviral therapy (ART) is effective at suppressing HIV replication, a viral reservoir persists that can reseed infection if ART is interrupted. Curing HIV will require elimination or containment of this reservoir, but the size of the HIV reservoir is highly variable between individuals. To evaluate the size of the HIV reservoir, several assays have been developed, including PCR-based assays for viral DNA, the intact proviral DNA assay, and the quantitative viral outgrowth assay (QVOA).

View Article and Find Full Text PDF

A long-lived latent reservoir of HIV-1-infected CD4 T cells persists with antiretroviral therapy and prevents cure. We report that the emergence of latently infected primary CD4 T cells requires the activity of histone deacetylase enzymes HDAC1/2 and HDAC3. Data from targeted HDAC molecules, an HDAC3-directed PROTAC, and CRISPR-Cas9 knockout experiments converge on a model where either HDAC1/2 or HDAC3 targeting can prevent latency, whereas all three enzymes must be targeted to achieve latency reversal.

View Article and Find Full Text PDF

Understanding the interplay between the HIV reservoir and the host immune system may yield insights into HIV persistence during antiretroviral therapy (ART) and inform strategies for a cure. Here, we applied machine learning approaches to cross-sectional high-parameter HIV reservoir and immunology data in order to characterize host-reservoir associations and generate new hypotheses about HIV reservoir biology. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and measurement of genetically intact and total HIV proviral DNA frequencies were performed on peripheral blood samples from 115 people with HIV (PWH) on long-term ART.

View Article and Find Full Text PDF

Quantifying variable importance is essential for answering high-stakes questions in fields like genetics, public policy, and medicine. Current methods generally calculate variable importance for a given model trained on a given dataset. However, for a given dataset, there may be many models that explain the target outcome equally well; without accounting for all possible explanations, different researchers may arrive at many conflicting yet equally valid conclusions given the same data.

View Article and Find Full Text PDF

A promising strategy to cure HIV-infected individuals is to use latency reversing agents (LRAs) to reactivate latent viruses, followed by host clearance of infected reservoir cells. However, reactivation of latent proviruses within infected cells is heterogeneous and often incomplete. This fact limits strategies to cure HIV which may require complete elimination of viable virus from all cellular reservoirs.

View Article and Find Full Text PDF

Antiretroviral therapy (ART) has dramatically improved the prognosis for people living with HIV-1, but a cure remains elusive. The largest barrier to a cure is the presence of a long-lived latent reservoir that persists within a heterogenous mix of cell types and anatomical compartments. Efforts to eradicate the latent reservoir have primarily focused on latency reversal strategies.

View Article and Find Full Text PDF

Background: Human immunodeficiency virus (HIV) infection remains incurable due to the persistence of a viral reservoir despite antiretroviral therapy (ART). Cannabis (CB) use is prevalent amongst people with HIV (PWH), but the impact of CB on the latent HIV reservoir has not been investigated.

Methods: Peripheral blood cells from a cohort of PWH who use CB and a matched cohort of PWH who do not use CB on ART were evaluated for expression of maturation/activation markers, HIV-specific T-cell responses, and intact proviral DNA.

View Article and Find Full Text PDF

A promising strategy to cure HIV infected individuals is to use latency reversing agents (LRAs) to reactivate latent viruses, followed by host clearance of infected reservoir cells. However, reactivation of latent proviruses within infected cells is heterogeneous and often incomplete. This fact limits strategies to cure HIV which may require complete elimination of viable virus from all cellular reservoirs.

View Article and Find Full Text PDF

Transcriptional silencing of latent HIV-1 proviruses entails complex and overlapping mechanisms that pose a major barrier to in vivo elimination of HIV-1. We developed a new latency CRISPR screening strategy, called Latency HIV-CRISPR which uses the packaging of guideRNA-encoding lentiviral vector genomes into the supernatant of budding virions as a direct readout of factors involved in the maintenance of HIV-1 latency. We developed a custom guideRNA library targeting epigenetic regulatory genes and paired the screen with and without a latency reversal agent-AZD5582, an activator of the non-canonical NFκB pathway-to examine a combination of mechanisms controlling HIV-1 latency.

View Article and Find Full Text PDF