98%
921
2 minutes
20
Human Immunodeficiency virus (HIV) infection is regulated by a wide array of host cell factors that combine to influence viral transcription and latency. To understand the complex relationship between the host cell and HIV-1 latency, we performed a lentiviral CRISPR screen that targeted a set of host cell genes whose expression or activity correlates with HIV-1 expression. We further investigated one of the identified factors - the transcription factor ETS1, and found that it is required for maintenance of HIV-1 latency in both latently infected cell lines and in a primary CD4 T cell latency model. Interestingly, ETS1 played divergent roles in actively infected and latently infected CD4 T cells, with knockout of ETS1 leading to reduced HIV-1 expression in actively infected cells, but increased HIV-1 expression in latently infected cells, indicating that ETS1 can play both a positive and negative role in HIV-1 expression. CRISPR/Cas9 knockout of ETS1 in CD4 T cells from ART-suppressed people with HIV-1 (PWH) confirmed that ETS1 maintains transcriptional repression of the clinical HIV-1 reservoir. Transcriptomic profiling of ETS1-depleted cells from PWH identified a set of host cell pathways involved in viral transcription that are controlled by ETS1 in resting CD4 T cells. In particular, we observed that ETS1 knockout increased expression of the long non-coding RNA MALAT1 that has been previously identified as a positive regulator of HIV-1 expression. Furthermore, the impact of ETS1 depletion on HIV-1 expression in latently infected cells was partially dependent on MALAT1. Additionally, we demonstrate that ETS1 knockout resulted in enhanced abundance of activating modifications (H3K9Ac, H3K27Ac, H3K4me3) on histones located at the HIV-1 long terminal repeat (LTR), indicating that ETS1 regulates the activity of chromatin-targeting complexes at the HIV-1 LTR. Overall, these data demonstrate that ETS1 is an important regulator of HIV-1 latency that impacts HIV-1 expression through repressing MALAT1 expression and by regulating modification of proviral histones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005537 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1012467 | DOI Listing |
PLoS Pathog
September 2025
INSERM UMR 1291, CNRS UMR 5051, Université de Toulouse, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France.
Vδ1 γδ T cells are key players in innate and adaptive immunity, particularly at mucosal interfaces such as the gut. An increase in circulating Vδ1 cells has long been observed in people with HIV-1, but remains poorly understood. We performed a comprehensive characterization of Vδ1 T cells in blood and duodenal intra-epithelial lymphocytes, obtained from endoscopic mucosal biopsies of 15 people with HIV-1 on antiretroviral therapy and 15 HIV-seronegative controls, in a substudy of the ANRS EP61 GALT study (NCT02906137).
View Article and Find Full Text PDFPLoS Biol
September 2025
Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America.
Despite the success of antiretroviral therapy in suppressing plasma viremia in people living with human immunodeficiency virus type-1 (HIV-1), persistent viral RNA expression in tissue reservoirs is observed and can contribute to HIV-1-induced immunopathology and comorbidities. Infection of long-lived innate immune cells, such as tissue-resident macrophages and microglia may contribute to persistent viral RNA production and chronic inflammation. We recently reported that de novo cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) in macrophages and microglia leads to MDA5 and MAVS-dependent innate immune sensing and induction of type I IFN responses, demonstrating that HIV icRNA is a pathogen-associated molecular pattern (PAMP).
View Article and Find Full Text PDFCell
August 2025
Department of Cardiac Surgery, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, School of Life Science and
Early organogenesis is a crucial stage in embryonic development, characterized by extensive cell fate specification to initiate organ formation but also by a high susceptibility to developmental defects. Here, we profiled 285 serial sections from six E7.5-E8.
View Article and Find Full Text PDFmBio
September 2025
Centre de Recherche du CHUM, Montreal, Québec, Canada.
HIV-1-mediated CD4 downregulation is a well-known mechanism that protects infected cells from antibody-dependent cellular cytotoxicity (ADCC). While CD4 downregulation by HIV-1 Nef and Vpu proteins has been extensively studied, the contribution of the HIV-1 envelope glycoprotein (Env) in this mechanism is less understood. While Env is known to retain CD4 in the endoplasmic reticulum (ER) through its CD4-binding site (CD4bs), little is known about the mechanisms underlying this process.
View Article and Find Full Text PDFAdministration of HIV-1 neutralizing antibodies can suppress viremia and prevent infection . However, clinical use is challenged by broad envelope sequence diversity and rapid emergence of viral escape . Here, we performed single B cell profiling of 32 top HIV-1 elite neutralizers to identify broadly neutralizing antibodies (bNAbs) with highest potency and breadth for clinical application.
View Article and Find Full Text PDF