98%
921
2 minutes
20
A promising strategy to cure HIV-infected individuals is to use latency reversing agents (LRAs) to reactivate latent viruses, followed by host clearance of infected reservoir cells. However, reactivation of latent proviruses within infected cells is heterogeneous and often incomplete. This fact limits strategies to cure HIV which may require complete elimination of viable virus from all cellular reservoirs. For this reason, understanding the mechanism(s) of reactivation of HIV within cellular reservoirs is critical to achieve therapeutic success. Methodologies enabling temporal tracking of single cells as they reactivate followed by sorting and molecular analysis of those cells are urgently needed. To this end, microraft arrays were adapted to image T-lymphocytes expressing mCherry under the control of the HIV long terminal repeat (LTR) promoter, in response to the application of LRAs (prostratin, iBET151, and SAHA). In response to prostratin, iBET151, and SAHA, 30.5%, 11.2%, and 12.1% percentage of cells, respectively. The arrays enabled large numbers of single cells (>25,000) to be imaged over time. mCherry fluorescence quantification identified cell subpopulations with differing reactivation kinetics. Significant heterogeneity was observed at the single-cell level between different LRAs in terms of time to reactivation, rate of mCherry fluorescence increase upon reactivation, and peak fluorescence attained. In response to prostratin, subpopulations of T lymphocytes with slow and fast reactivation kinetics were identified. Single T-lymphocytes that were either fast or slow reactivators were sorted, and single-cell RNA-sequencing was performed. Different genes associated with inflammation, immune activation, and cellular and viral transcription factors were found.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487311 | PMC |
http://dx.doi.org/10.1002/btm2.10551 | DOI Listing |
Trends Biotechnol
September 2025
Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
Type 2 diabetes (T2D) is characterized by persistent and unresolved tissue inflammation caused by the infiltration and dysregulation of immune cells. Current therapeutics targeting inflammatory immune cells for T2D remain limited. In this study, we analyzed single cell RNA from metabolic organs in T2D, revealing increased macrophage accumulation and a pathogenic macrophage subpopulation defined as NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammatory and metabolically activated macrophages.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
The clinical use of gemcitabine (GEM), a frontline chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), is limited by its short half-life, rapid systemic clearance, associated dose-limiting toxicities and a faster development of resistance in pancreatic cancer. Aspirin (ASP), a repurposed NSAID, has been shown to sensitize PDAC cells to GEM through modulation of multiple oncogenic and inflammatory pathways. However, its clinical use is restricted by dose-dependent gastrointestinal toxicity.
View Article and Find Full Text PDFPLoS Pathog
September 2025
INSERM UMR 1291, CNRS UMR 5051, Université de Toulouse, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France.
Vδ1 γδ T cells are key players in innate and adaptive immunity, particularly at mucosal interfaces such as the gut. An increase in circulating Vδ1 cells has long been observed in people with HIV-1, but remains poorly understood. We performed a comprehensive characterization of Vδ1 T cells in blood and duodenal intra-epithelial lymphocytes, obtained from endoscopic mucosal biopsies of 15 people with HIV-1 on antiretroviral therapy and 15 HIV-seronegative controls, in a substudy of the ANRS EP61 GALT study (NCT02906137).
View Article and Find Full Text PDFPLoS Biol
September 2025
Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America.
Despite the success of antiretroviral therapy in suppressing plasma viremia in people living with human immunodeficiency virus type-1 (HIV-1), persistent viral RNA expression in tissue reservoirs is observed and can contribute to HIV-1-induced immunopathology and comorbidities. Infection of long-lived innate immune cells, such as tissue-resident macrophages and microglia may contribute to persistent viral RNA production and chronic inflammation. We recently reported that de novo cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) in macrophages and microglia leads to MDA5 and MAVS-dependent innate immune sensing and induction of type I IFN responses, demonstrating that HIV icRNA is a pathogen-associated molecular pattern (PAMP).
View Article and Find Full Text PDFmSystems
September 2025
Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, USA.
is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.
View Article and Find Full Text PDF