98%
921
2 minutes
20
To better understand the molecular mechanism that drives neuroinflammation, we analyzed the protein profiles of 27 brains from HIV with HIV (PWH) on antiretroviral therapy (ART), including various stages of HIV-associated neurocognitive disorders (HAND), and compared them to 9 HAND-negative controls. We found that most of the proteins that were increased-about 66.7%-were involved in immune response pathways. Of these, 23.3% were specifically related to type I interferon (IFN-I) signaling, which remains active in the brain through both HIV-related and unrelated mechanisms. Using single-cell RNA sequencing (scRNA-seq) on brain tissues collected during rapid autopsies from participants in the Last Gift cohort, we found that IFN-I signaling was especially strong in astrocytes, microglia (MG), and endothelial cells. In a mini-brain organoid model of acute HIV infection, IFN-I signaling was also highly active in astrocytes but less so in MG. Interestingly, IFN-I activation can happen without HIV being present-expression of human endogenous retrovirus-W1 (HERV-W1) Env can directly trigger this response in astrocytes, and it continues in glial cells even with effective ART. Together, our findings point to persistent IFN-I activation in glial and endothelial cells in the brain, which may contribute to neuroinflammation and cognitive disorders in PWH on ART.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367146 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1013411 | DOI Listing |
PLoS Pathog
September 2025
Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
The exocyst complex is a heterooctameric protein complex, the individual components of the complex are thought to act on specific biological processes. However, the role of Sec10, the central subunit of the complex, in host defense and viral replication remains unclear. Here, we reported that Sec10 significantly impairs the activation of JAK-STAT signal pathway of type I IFN (IFN-I) response against both DNA- and RNA-viruses, and promotes viral replication, respectively.
View Article and Find Full Text PDFFASEB J
September 2025
Immunology Program, Laboratory of Immunology and Cellular Stress, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.
Zika virus (ZIKV) is a mosquito-borne flavivirus causing a major epidemic in the Americas in 2015. Dendritic cells (DCs) are leukocytes with key antiviral functions, but their role in ZIKV infection remains under investigation. While most studies have focused on the monocyte-derived subtype of DCs, less is known about conventional dendritic cells (cDCs), essential for the orchestration of antiviral adaptive immunity.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China.
The innate immune system serves as the first line of defense against viral infections. Type I interferon (IFN-I) signaling, in particular, plays a crucial role in mediating antiviral immunity. Here, we identify Betrixaban (BT), a novel small-molecule compound that activates innate immune responses, leading to broad-spectrum antiviral effects.
View Article and Find Full Text PDFMol Cell
September 2025
Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address:
TLRs detect pathogen-derived uridine but not endogenous pseudouridine, which promotes host defense without autoimmunity. This principle is critical for the safe design of mRNA-based therapeutics, but the underlying mechanisms driving differential innate immune activation were unknown. In a recent issue of Cell, Bérouti et al.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
September 2025
Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.