Publications by authors named "Dongwook Go"

The orbital Edelstein effect and orbital Hall effect, where a charge current induces a nonequilibrium orbital angular momentum, offer a promising method for efficiently manipulating nanomagnets using light elements. Despite extensive research, understanding the Onsager's reciprocity of orbital transport remains elusive. In this study, we experimentally demonstrate the Onsager's reciprocity of orbital transport in an orbital Edelstein system by utilizing nonlocal measurements.

View Article and Find Full Text PDF

Altermagnets are magnetic materials with antiferromagnetic spin ordering but exhibit ferromagnetic properties. Understanding the microscopic origin of the latter is a central problem. Ferromagnetlike properties such as the anomalous Hall effect are linked with weak ferromagnetism, whose microscopic origin in altermagnets remains unclear however.

View Article and Find Full Text PDF

We report strong spin-orbit torques (SOTs) generated by noncollinear antiferromagnets MnNiCuN, over a wide temperature range. The SOT efficiency peaks up to 0.3 at the Néel temperature (), substantially higher than that of commonly studied nonmagnets, such as Pt.

View Article and Find Full Text PDF

Chirality is ubiquitous in nature and manifests in a wide range of phenomena including chemical reactions, biological processes, and quantum transport of electrons. In quantum materials, the chirality of fermions, given by the relative directions between the electron spin and momentum, is connected to the band topology of electronic states. This study shows that in structurally chiral materials like CoSi, the orbital angular momentum (OAM) serves as the main driver of a nontrivial band topology in this new class of unconventional topological semimetals, even when spin-orbit coupling is negligible.

View Article and Find Full Text PDF

In magnetic systems, angular momentum is carried by spin and orbital degrees of freedom. Nonlocal devices, comprising heavy-metal nanowires on magnetic insulators like yttrium iron garnet (YIG), enable angular momentum transport via magnons. These magnons are polarized by spin accumulation at the interface through the spin Hall effect (SHE) and detected via the inverse SHE (iSHE).

View Article and Find Full Text PDF

The generation of current-induced torques through the spin Hall effect in Pt has been key to the development of spintronics. In prototypical ferromagnetic-metal/Pt devices, the characteristic length of the torque generation is known to be about 1 nm due to the short spin diffusion length of Pt. Here, we report the observation of a long-range current-induced torque in Ni/Pt bilayers.

View Article and Find Full Text PDF

Recent advances in the manipulation of the orbital angular momentum (OAM) within the paradigm of orbitronics presents a promising avenue for the design of future electronic devices. In this context, the recently observed orbital Hall effect (OHE) occupies a special place. Here, focusing on both the second-order topological and quantum anomalous Hall insulators in two-dimensional ferromagnets, we demonstrate that topological phase transitions present an efficient and straightforward way to engineer the OHE, where the OAM distribution can be controlled by the nature of the band inversion.

View Article and Find Full Text PDF

The emerging field of orbitronics exploits the electron orbital momentum L. Compared to spin-polarized electrons, L may allow the transfer of magnetic information with considerably higher density over longer distances in more materials. However, direct experimental observation of L currents, their extended propagation lengths and their conversion into charge currents has remained challenging.

View Article and Find Full Text PDF

The orbital Hall effect refers to the generation of electron orbital angular momentum flow transverse to an external electric field. Contrary to the common belief that the orbital angular momentum is quenched in solids, theoretical studies predict that the orbital Hall effect can be strong and is a fundamental origin of the spin Hall effect in many transition metals. Despite the growing circumstantial evidence, its direct detection remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Orbital responses in ferromagnets are often thought to be short-ranged due to strong crystal field effects, but recent findings reveal they can be surprisingly long-ranged.
  • When an external electric field is applied to a nonmagnet in a bilayer with a ferromagnet, this induces significant orbital angular momentum in the ferromagnet that exceeds the typical spin dephasing length.
  • The unique behavior arises from crystal symmetry creating "hotspots" for orbital response, potentially allowing for new applications in orbitronic devices and serving as testable evidence for orbital transport.
View Article and Find Full Text PDF

We propose a concept of noncollinear spin current, whose spin polarization varies in space even in nonmagnetic crystals. While it is commonly assumed that the spin polarization of the spin Hall current is uniform, asymmetric local crystal potential generally allows the spin polarization to be noncollinear in space. Based on microscopic considerations, we demonstrate that such noncollinear spin Hall currents can be observed, for example, in layered Kagome Mn_{3}X (X=Ge, Sn) compounds.

View Article and Find Full Text PDF

We report the observation of magnetoresistance (MR) that could originate from the orbital angular momentum (OAM) transport in a permalloy (Py)/oxidized Cu (Cu^{*}) heterostructure: the orbital Rashba-Edelstein magnetoresistance. The angular dependence of the MR depends on the relative angle between the induced OAM and the magnetization in a similar fashion as the spin Hall magnetoresistance. Despite the absence of elements with large spin-orbit coupling, we find a sizable MR ratio, which is in contrast to the conventional spin Hall magnetoresistance which requires heavy elements.

View Article and Find Full Text PDF

The orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment.

View Article and Find Full Text PDF

Current-induced spin-orbit torques (SOTs) allow for the efficient electrical manipulation of magnetism in spintronic devices. Engineering the SOT efficiency is a key goal that is pursued by maximizing the active interfacial spin accumulation or modulating the nonequilibrium spin density that builds up through the spin Hall and inverse spin galvanic effects. Regardless of the origin, the fundamental requirement for the generation of the current-induced torques is a net spin accumulation.

View Article and Find Full Text PDF

Motivated by the importance of understanding various competing mechanisms to the current-induced spin-orbit torque on magnetization in complex magnets, we develop a theory of current-induced spin-orbital coupled dynamics in magnetic heterostructures. The theory describes angular momentum transfer between different degrees of freedom in solids, , the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom, achieved in a steady state under an applied external electric field.

View Article and Find Full Text PDF

We show theoretically that both the intrinsic spin Hall effect (SHE) and orbital Hall effect (OHE) can arise in centrosymmetric systems through momentum-space orbital texture, which is ubiquitous even in centrosymmetric systems unlike spin texture. The OHE occurs even without spin-orbit coupling (SOC) and is converted into the SHE through SOC. The resulting spin Hall conductivity is large (comparable to that of Pt) but depends on the SOC strength in a nonmonotonic way.

View Article and Find Full Text PDF

As the inversion symmetry is broken at a surface, spin-orbit interaction gives rise to spin-dependent energy shifts - a phenomenon which is known as the spin Rashba effect. Recently, it has been recognized that an orbital counterpart of the spin Rashba effect - the orbital Rashba effect - can be realized at surfaces even without spin-orbit coupling. Here, we propose a mechanism for the orbital Rashba effect based on sp orbital hybridization, which ultimately leads to the electric polarization of surface states.

View Article and Find Full Text PDF