98%
921
2 minutes
20
The orbital Hall effect refers to the generation of electron orbital angular momentum flow transverse to an external electric field. Contrary to the common belief that the orbital angular momentum is quenched in solids, theoretical studies predict that the orbital Hall effect can be strong and is a fundamental origin of the spin Hall effect in many transition metals. Despite the growing circumstantial evidence, its direct detection remains elusive. Here we report the magneto-optical observation of the orbital Hall effect in the light metal titanium (Ti). The Kerr rotation by the orbital magnetic moment accumulated at Ti surfaces owing to the orbital Hall current is measured, and the result agrees with theoretical calculations semi-quantitatively and is supported by the orbital torque measurement in Ti-based magnetic heterostructures. This result confirms the orbital Hall effect and indicates that the orbital angular momentum is an important dynamic degree of freedom in solids. Moreover, this calls for renewed studies of the orbital effect on other degrees of freedom such as spin, valley, phonon and magnon dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-023-06101-9 | DOI Listing |
Nano Lett
September 2025
Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan.
Monolayer Janus transition-metal dichalcogenides possess Ising- and Rashba-type spin-orbit-couplings (SOC), leading to intriguing spin splitting effects at K and K', and around Γ points across the wide energy range. Using first-principles calculations, we unveil these SOC characteristics in metallic Janus NbSSe and demonstrate its potential for optically controlled spin current generation. On the basis of the symmetry of the system, we show that different linear polarized light can selectively drive spin currents of distinct spin components.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 6997801, Israel.
Graphene layers can assemble in two shifted metastable positions per interface, leading to eight possible structural arrangements in five-layer graphene, six of which correspond to distinct periodic crystals. These polytypes exhibit diverse symmetries, interlayer electronic hybridization, van der Waals adhesion, and optical responses. Arrangements lacking inversion [I] and mirror [M] symmetries host intrinsic polarizations, while those with sufficiently flat electronic bands display orbital magnetization, unconventional superconductivity, and anomalous fractional quantum Hall states.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan.
In solids, the crystal field couples the electronic orbital degree of freedom to the lattice. This coupling suggests that an excitation of lattice dynamics could trigger the dynamics of orbital angular momentum of electrons, thereby generating orbital currents-a flow of electronic orbital angular momentum. However, the interplay between orbital currents and lattice dynamics has been elusive.
View Article and Find Full Text PDFChem Sci
August 2025
P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
Organometallic cerium(iv) complexes have been challenging to isolate and characterize due to the strongly oxidizing nature of the cerium(iv) cation. Herein, we report two cerium(iv) alkynyl complexes, [Ce(TriNOx)(C[triple bond, length as m-dash]C-SiMe)] (1-Ce) and [Ce(TriNOx)(C[triple bond, length as m-dash]C-Ph)] (1-Ce) (TriNOx = (2--butylhydroxylaminato)benzylamine), that include terminal alkyne moieties. The isostructural thorium analogue [Th(TriNOx)(C[triple bond, length as m-dash]C-SiMe)] (1-Th) was also synthesized and compared with 1-Ce in bond distance, C-NMR spectra, vibrational spectra and electronic structure.
View Article and Find Full Text PDF