To date there have been many studies on multi-channel absorbers for conventional photonic crystals (PCs). However, the number of absorption channels is small and uncontrollable, which cannot satisfy applications such as multispectral or quantitative narrowband selective filters. To address these issues, a tunable and controllable multi-channel time-comb absorber (TCA) based on continuous photonic time crystals (PTCs), is theoretically proposed.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2023
An advanced optical terahertz (THz) fingerprint sensor based on coherent perfect absorption (CPA) is proposed. Based on a one-dimensional layered photonic structure, the sensor contains a cavity that is developed for THz fingerprint measurement. Utilizing the magneto-optical effect of magnetized InSb, CPA is excited in the structure of the sensor.
View Article and Find Full Text PDFTo enhance the fluorescence efficiency of semiconductor nanocrystal quantum dots (QDs), strategies via enhancing photo-absorption and eliminating non-radiative relaxation have been proposed. In this study, we demonstrate that fluorescence efficiency of molybdenum disulfide quantum dots (MoS QDs) can be enhanced by single-atom metal (Au, Ag, Pt, Cu) modification. Four-fold enhancement of the fluorescence emission of MoS QDs is observed with single-atom Au modification.
View Article and Find Full Text PDFVarious S-bonding configurations existing in sulfur-doped reduced graphene oxide (S-rGO) show different electronic structures and physiochemical properties. Thus, understanding the properties of unique S-bonding configurations requires the construction of S-rGO with only single configuration. Here, we synthesized S-rGO with a pure thiophene-sulfur configuration through a simple and low-cost hydrothermal method by simply controlling the oxidation degree of the graphene oxide (GO) precursor.
View Article and Find Full Text PDFConventional ion current-based nanopore techniques that identify single molecules are hampered by limitations of providing only the ionic current information. Here, we introduce a silver nanotriangle-based nanopore (diameter < 50 nm) system for detecting molecule translocation using surface-enhanced Raman scattering. Rhodamine 6G is used as a model molecule to study the effect of an electric field (-1 V) on the mass transport.
View Article and Find Full Text PDFSci Bull (Beijing)
May 2020
Electrochemical conversion of CO into fuels is a promising means to solve greenhouse effect and recycle chemical energy. However, the CO reduction reaction (CORR) is limited by the high overpotential, slow kinetics and the accompanied side reaction of hydrogen evolution reaction. Au nanocatalysts exhibit high activity and selectivity toward the reduction of CO into CO.
View Article and Find Full Text PDFWe propose an in situ and label-free method for detection of biomolecular recognition events by use of a nanochannel-ion channel hybrid device integrated with an electrochemical detector. The aptamer is first immobilized on the outer surface of the nanochannel-ion channel hybrid. Its binding with target thrombin in solution considerably regulates the mass-transfer behavior of the device owing to the varied surface charge density and effective channel size.
View Article and Find Full Text PDFJ Am Chem Soc
November 2017
Water-splitting devices for hydrogen generation through electrolysis (hydrogen evolution reaction, HER) hold great promise for clean energy. However, their practical application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. We previously reported that HER can be largely enhanced through finely tuning the energy level of molybdenum sulfide (MoS) by hot electron injection from plasmonic gold nanoparticles.
View Article and Find Full Text PDF