Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To date there have been many studies on multi-channel absorbers for conventional photonic crystals (PCs). However, the number of absorption channels is small and uncontrollable, which cannot satisfy applications such as multispectral or quantitative narrowband selective filters. To address these issues, a tunable and controllable multi-channel time-comb absorber (TCA) based on continuous photonic time crystals (PTCs), is theoretically proposed. Compared with conventional PCs with fixed refractive index (RI), this system forms a stronger local electric field enhancement in the TCA by absorbing externally modulated energy, resulting in sharp multi-channel absorption peaks (APs). Tunability can be achieved by adjusting the RI, angle, and time period unit (T) of the PTCs. Diversified tunable methods allow the TCA to have more potential applications. In addition, changing T can adjust the number of multi-channels. More importantly, changing the primary term coefficient of n(t) of PTC can control the number of time-comb absorption peaks (TCAPs) in multi-channels within a certain range, and the mathematical relationship between the coefficients and the number of multiple channels is summarized. This will have potential applications in the design of quantitative narrowband selective filters, thermal radiation detectors, optical detection instruments, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.491783 | DOI Listing |