ACS Appl Mater Interfaces
February 2025
The effect of growth temperature and subsequent annealing on the epitaxy of both single- and few-layer TaSe on Se-terminated GaP(111) substrates is investigated. The selective growth of the 1T and 1H phases is shown up to 1 ML according to X-ray and ultraviolet photoelectron spectroscopies. The 1H monolayer, favored at low temperatures, exhibits a very homogeneous coverage after annealing, while the 1T ML, grown at high temperatures, is characterized by a better in-plane orientation.
View Article and Find Full Text PDFThe demand for high-performance energy storage devices to power Internet of Things applications has driven intensive research on micro-supercapacitors (MSCs). In this study, RuN films made by magnetron sputtering as an efficient electrode material for MSCs are investigated. The sputtering parameters are carefully studied in order to maximize film porosity while maintaining high electrical conductivity, enabling a fast charging process.
View Article and Find Full Text PDFThe morphogenesis of most carbonaceous microstructures that resemble microfossils in Archean (4-2.5 Ga old) rocks remains debated. The associated carbonaceous matter may even-in some cases-derive from abiotic organic molecules.
View Article and Find Full Text PDFMiniaturized electronics suffer from a lack of energy autonomy. In that context, the fabrication of lithium-ion solid-state microbatteries with high performance is mandatory for powering the next generation of portable electronic devices. Here, the fabrication of a thin film positive electrode for 3D Li-ion microbatteries made by the atomic layer deposition (ALD) method and in situ lithiation step is demonstrated.
View Article and Find Full Text PDFMicro-batteries are attractive miniaturized energy devices for new Internet of Things applications, but the lack of understanding of their degradation process during cycling hinders improving their performance. Here focused ion beam (FIB)-lamella from LiMn Ni O (LMNO) thin-film cathode is in situ cycled in a liquid electrolyte inside an electrochemical transmission electron microscope (TEM) holder to analyze structural and morphology changes upon (de)lithiation processes. A high-quality electrical connection between the platinum (Pt) current collector of FIB-lamella and the microchip's Pt working electrode is established, as confirmed by local two-probe conductivity measurements.
View Article and Find Full Text PDFIn the last decade, transmission X-ray microscopes (TXMs) have come into operation in most of the synchrotrons worldwide. They have proven to be outstanding tools for non-invasive ex and in situ 3D characterization of materials at the nanoscale across varying range of scientific applications. However, their spatial resolution has not improved in many years, while newly developed functional materials and microdevices with enhanced performances exhibit nanostructures always finer.
View Article and Find Full Text PDFElectron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb InGaAs/InP heterostructure quantum well with a lattice constant of 21 nm.
View Article and Find Full Text PDFThe D/H ratio imaging of weakly hydrated minerals prepared as focused ion beam (FIB) sections is developed in order to combine isotopic imaging by nanoscale secondary ion mass spectrometry (NanoSIMS) of micrometer-sized grains with other nanoscale imaging techniques, such as transmission electron microscopy. In order to maximize the accuracy, sensitivity, precision, and reproducibility of D/H ratios at the micrometer size, while minimizing the surface contamination at the same time, we explored all instrumental parameters known to influence the measurement of D/H ratios in situ. Optimal conditions were found to be obtained with the use of (i) a Cs ion source and detection of H and D at low mass resolving power, (ii) a primary beam intensity of 100 pA, and (iii) raster sizes in the range of 8-15 μm.
View Article and Find Full Text PDFHere, we demonstrate a simple top-down method for nanotechnology whereby electron beam (ebeam) lithography can be combined with tilted, rotated thermal evaporation to control the topography and size of an assortment of metallic objects at the nanometre scale. In order to do this, the evaporation tilt angle is varied between 1 and 24°. The technique allows the 3-dimensional tailoring of a range of metallic object shapes from sharp, flat bottomed spikes to hollow cylinders and rings-all of which have rotational symmetry and whose critical dimensions are much smaller than the lithographic feature size.
View Article and Find Full Text PDFACS Nano
February 2019
Semiconductor nanocrystalline heterostructures can be produced by the immersion of semiconductor substrates into an aqueous precursor solution, but this approach usually leads to a high density of interfacial traps. In this work, we study the effect of a chemical passivation of the substrate prior to the nanocrystalline growth. PbS nanoplatelets grown on sulfur-treated InP (001) surfaces at temperatures as low as 95 °C exhibit abrupt crystalline interfaces that allow a direct and reproducible electron transfer to the InP substrate through the nanometer-thick nanoplatelets with scanning tunnelling spectroscopy.
View Article and Find Full Text PDFIn this paper we report on the fabrication and electrical characterization of InAs-on-nothing metal-oxide-semiconductor field-effect transistor composed of a suspended InAs channel and raised InAs n+ contacts. This architecture is obtained using 3D selective and localized molecular beam epitaxy on a lattice mismatched InP substrate. The suspended InAs channel and InAs n+ contacts feature a reproducible and uniform shape with well-defined 3D sidewalls.
View Article and Find Full Text PDFThis work presents a detailed study of GaSb quantum dot (QD) epitaxy on (001) GaP substrates by means of molecular beam epitaxy. Despite the large mismatch between GaP and GaSb, we show that in the nucleation-diffusion regime, the QD size distribution follows the predictions of the scaling theory. Scanning transmission electron microscopy analysis of grown QDs reveal that they are plastically relaxed by 60° pairs of misfit dislocations and the valence band offset measured by x-ray photoelectron spectroscopy on such QDs amounts to 0.
View Article and Find Full Text PDFThe work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time.
View Article and Find Full Text PDFProblematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500-600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown.
View Article and Find Full Text PDFNano Lett
October 2015
The structural and electronic properties of nonstoichiometric low-temperature grown GaAs nanowire shells have been investigated with scanning tunneling microscopy and spectroscopy, pump-probe reflectivity, and cathodoluminescence measurements. The growth of nonstoichiometric GaAs shells is achieved through the formation of As antisite defects, and to a lower extent, after annealing, As precipitates. Because of the high density of atomic steps on the nanowire sidewalls, the Fermi level is pinned midgap, causing the ionization of the subsurface antisites and the formation of depleted regions around the As precipitates.
View Article and Find Full Text PDFWe present a method to characterize sub-10 nm capacitors and tunnel junctions by interferometric scanning microwave microscopy (iSMM) at 7.8 GHz. At such device scaling, the small water meniscus surrounding the iSMM tip should be reduced by proper tip tuning.
View Article and Find Full Text PDFWe report on a strain-induced phase transformation in Ge nanowires under external shear stresses. The resulted polytype heterostructure may have great potential for photonics and thermoelectric applications. ⟨111⟩-oriented Ge nanowires with standard diamond structure (3C) undergo a phase transformation toward the hexagonal diamond phase referred as the 2H-allotrope.
View Article and Find Full Text PDFThe use of peptidic ligands is validated as a generic chemical platform allowing one to finely control the organization in solid phase of semiconductor nanorods originally dispersed in an aqueous media. An original method to generate, on a macroscopic scale and with the desired geometry, three-dimensional supracrystals composed of quantum rods is introduced. In a first step, nanorods are transferred in an aqueous phase thanks to the substitution of the original capping layer by peptidic ligands.
View Article and Find Full Text PDFWe report on a new form of III-V compound semiconductor nanostructures growing epitaxially as vertical V-shaped nanomembranes on Si(001) and study their light-scattering properties. Precise position control of the InAs nanostructures in regular arrays is demonstrated by bottom-up synthesis using molecular beam epitaxy in nanoscale apertures on a SiO(2) mask. The InAs V-shaped nanomembranes are found to originate from the two opposite facets of a rectangular pyramidal island nucleus and extend along two opposite <111> B directions, forming flat {110} walls.
View Article and Find Full Text PDFA uniform array of single-grain Au nanodots, as small as 5-8 nm, can be formed on silicon using e-beam lithography. The as-fabricated nanodots are amorphous, and thermal annealing converts them to pure Au single crystals covered with a thin SiO(2) layer. These findings are based on physical measurements, such as atomic force microscopy (AFM), atomic-resolution scanning transmission electron microscopy, and chemical techniques using energy dispersive X-ray spectroscopy.
View Article and Find Full Text PDFThe interferogram of a high index phase mask of 200 nm period under normal incidence of a collimated beam at 244 nm wavelength with substantially suppressed zeroth order produces a 100 nm period grating in a resist film under immersion. The paper describes the phase mask design, its fabrication, the effect of electron-beam lithographic stitching errors and optical assessment of the fabricated sub-cutoff grating.
View Article and Find Full Text PDFParticles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size.
View Article and Find Full Text PDFWe report here the design, fabrication and testing of a novel nanofluidic device which we term a 'nano-nib' due to its resemblance to a nano-fountain pen. The nanofluidic device is an emitter tip which incorporates a nanofluidic capillary slot coupled to a microfluidic capillary slot. The microfluidic capillary slot is fabricated using reactive ion etching (RIE) whilst the nanofluidic capillary slot is fabricated using focused ion beam (FIB) etching.
View Article and Find Full Text PDF