Moiré patterns in van der Waals bilayer materials complicate the analysis of atomic-resolution images, hindering the atomic-scale insight typically attainable with scanning transmission electron microscopy. Here, we report a method to detect the positions and identities of atoms in each of the individual layers that compose twisted bilayer heterostructures. We developed a deep learning model, Gomb-Net, which identifies the coordinates and atomic species in each layer, deconvoluting the moiré pattern.
View Article and Find Full Text PDFAutonomous systems that combine synthesis, characterization, and artificial intelligence can greatly accelerate the discovery and optimization of materials, however platforms for growth of macroscale thin films by physical vapor deposition techniques have lagged far behind others. Here this study demonstrates autonomous synthesis by pulsed laser deposition (PLD), a highly versatile synthesis technique, in the growth of ultrathin WSe films. By combing the automation of PLD synthesis and in situ diagnostic feedback with a high-throughput methodology, this study demonstrates a workflow and platform which uses Gaussian process regression and Bayesian optimization to autonomously identify growth regimes for WSe films based on Raman spectral criteria by efficiently sampling 0.
View Article and Find Full Text PDFIsotope effects have received increasing attention in materials science and engineering because altering isotopes directly affects phonons, which can affect both thermal properties and optoelectronic properties of conventional semiconductors. However, how isotopic mass affects the optoelectronic properties in 2D semiconductors remains unclear because of measurement uncertainties resulting from sample heterogeneities. Here, we report an anomalous optical bandgap energy red shift of 13 (±7) milli-electron volts as mass of Mo isotopes is increased in laterally structured MoS-MoS monolayers grown by a two-step chemical vapor deposition that mitigates the effects of heterogeneities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Boron-doped carbon nanostructures have attracted great interest recently because of their remarkable electrocatalytic performance comparable to or better than that of conventional metal catalysts. In a previous work (, 605 ()), we reported that along with significant performance improvement, B doping enhances the oxidation resistance of few-layer graphene (FLG) that provides increased structural stability for intermediate-temperature fuel-cell electrodes. In general, detailed characterization of the atomic and electronic structure transformations that occur in B-doped carbon nanostructures during fuel-cell operation is lacking.
View Article and Find Full Text PDFWe report the seminal experimental isolation and DFT characterization of pristine [5,5] C-D(1) fullertubes. This achievement represents the largest soluble carbon molecule obtained in its pristine form. The [5,5] C species is the highest aspect ratio fullertube purified to date and now surpasses the recent gigantic [5,5] C-D(1).
View Article and Find Full Text PDFNonlinear optical responses in second harmonic generation (SHG) of van der Waals heterobilayers, Janus MoSSe/MoS, are theoretically optimized as a function of strain and stacking order by adopting an exchange-correlation hybrid functional and a real-time approach in first-principles calculation. We find that the calculated nonlinear susceptibility, χ, in AA stacking (550 pm/V) becomes three times as large as AB stacking (170 pm/V) due to the broken inversion symmetry in the AA stacking. The present theoretical prediction is compared with the observed SHG spectra of Janus MoSSe/MoS heterobilayers, in which the peak SHG intensity of AA stacking becomes four times as large as AB stacking.
View Article and Find Full Text PDFMoS nanoribbons have attracted increased interest due to their properties, which can be tailored by tuning their dimensions. Herein, the growth of MoS nanoribbons and triangular crystals formed by the reaction between films of MoOx (2
Energetic processing methods such as hyperthermal implantation hold special promise to achieve the precision synthesis of metastable two-dimensional (2D) materials such as Janus monolayers; however, they require precise control. Here, we report a feedback approach to reveal and control the transformation pathways in materials synthesis by pulsed laser deposition (PLD) and apply it to investigate the transformation kinetics of monolayer WS crystals into Janus WSSe and WSe by implantation of Se clusters with different maximum kinetic energies (<42 eV/Se-atom) generated by laser ablation of a Se target. Real-time Raman spectroscopy and photoluminescence are used to assess the structure, composition, and optoelectronic quality of the monolayer crystal as it is implanted with well-controlled fluxes of selenium for different kinetic energies that are regulated with ICCD imaging, ion probe, and spectroscopy diagnostics.
View Article and Find Full Text PDFPdSe has a layered structure with an unusual, puckered Cairo pentagonal tiling. Its atomic bond configuration features planar 4-fold-coordinated Pd atoms and intralayer Se-Se bonds that enable polymorphic phases with distinct electronic and quantum properties, especially when atomically thin. PdSe is conventionally orthorhombic, and direct synthesis of its metastable polymorphic phases is still a challenge.
View Article and Find Full Text PDFCharge transfer properties of van der Waals heterostructures formed by Janus and regular transition metal dichalcogenide monolayers are studied by time-resolved pump-probe measurements and photoluminescence spectroscopy. Measurements of electron and hole transfer in three heterostructures with atomic layer sequences of S-W-Se/S-W-S, Se-W-S/S-W-S, and S-W-Se/Se-W-Se reveal that charge transfer from regular to Janus monolayers is ultrafast regardless of the direction of the built-in electric field of the Janus monolayer (Janus field). However, the charge transfer from Janus to regular layers is directional and controlled by the Janus field.
View Article and Find Full Text PDFDefects are ubiquitous in 2D materials and can affect the structure and properties of the materials and also introduce new functionalities. Methods to adjust the structure and density of defects during bottom-up synthesis are required to control the growth of 2D materials with tailored optical and electronic properties. Here, the authors present an Au-assisted chemical vapor deposition approach to selectively form S and S2 antisite defects, whereby one or two sulfur atoms substitute for a tungsten atom in WS monolayers.
View Article and Find Full Text PDFMany-body localization (MBL) has attracted significant attention because of its immunity to thermalization, role in logarithmic entanglement entropy growth, and opportunities to reach exotic quantum orders. However, experimental realization of MBL in solid-state systems has remained challenging. Here, we report evidence of a possible phonon MBL phase in disordered GaAs/AlAs superlattices.
View Article and Find Full Text PDFTwo-dimensional (2D) transition metal dichalcogenides (TMDs) exhibit exciting properties and versatile material chemistry that are promising for device miniaturization, energy, quantum information science, and optoelectronics. Their outstanding structural stability permits the introduction of various foreign dopants that can modulate their optical and electronic properties and induce phase transitions, thereby adding new functionalities such as magnetism, ferroelectricity, and quantum states. To accelerate their technological readiness, it is essential to develop controllable synthesis and processing techniques to precisely engineer the compositions and phases of 2D TMDs.
View Article and Find Full Text PDFUnderstanding the bottom-up synthesis of atomically thin two-dimensional (2D) crystals and heterostructures is important for the development of new processing strategies to assemble 2D heterostructures with desired functional properties. Here, we utilize laser-heating within a transmission electron microscope (TEM) to understand the stages of crystallization and coalescence of amorphous precursors deposited by pulsed laser deposition (PLD) as they are guided by 2D crystalline substrates into van der Waals (vdW) epitaxial heterostructures. Amorphous clusters of tungsten selenide were deposited by PLD at room temperature onto graphene or MoSe monolayer crystals that were suspended on TEM grids.
View Article and Find Full Text PDFTailoring the grain boundaries (GBs) and twist angles between two-dimensional (2D) crystals are two crucial synthetic challenges to deterministically enable envisioned applications such as moiré excitons, emerging magnetism, or single-photon emission. Here, we reveal how twisted 2D bilayers can be synthesized from the collision and coalescence of two growing monolayer MoS crystals during chemical vapor deposition. The twisted bilayer (TB) moiré angles are found to preserve the misorientation angle (θ) of the colliding crystals.
View Article and Find Full Text PDFPulsed laser deposition (PLD) can be considered a powerful method for the growth of two-dimensional (2D) transition-metal dichalcogenides (TMDs) into van der Waals heterostructures. However, despite significant progress, the defects in 2D TMDs grown by PLD remain largely unknown and yet to be explored. Here, we combine atomic resolution images and first-principles calculations to reveal the atomic structure of defects, grains, and grain boundaries in mono- and bilayer MoS grown by PLD.
View Article and Find Full Text PDFNano Lett
January 2021
We report here details of steady-state and time-resolved spectroscopy of excitonic dynamics for Janus transition metal dichalcogenide monolayers, including MoSSe and WSSe, which were synthesized by low-energy implantation of Se into transition metal disulfides. Absorbance and photoluminescence spectroscopic measurements determined the room-temperature exciton resonances for MoSSe and WSSe monolayers. Transient absorption measurements revealed that the excitons in Janus structures form faster than those in pristine transition metal dichalcogenides by about 30% due to their enhanced electron-phonon interaction by the built-in dipole moment.
View Article and Find Full Text PDFTwo-dimensional (2D) semiconductors bear great promise for application in optoelectronic devices, but the low diffusivity of excitons stands as a notable challenge for device development. Here, we demonstrate that the diffusivity of excitons in monolayer MoS can be improved from 1.5 ± 0.
View Article and Find Full Text PDFMolybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non-equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self-supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst.
View Article and Find Full Text PDFJ Am Chem Soc
October 2020
Interlayer coupling plays essential roles in the quantum transport, polaritonic, and electrochemical properties of stacked van der Waals (vdW) materials. In this work, we report the unconventional interlayer coupling in vdW heterostructures (HSs) by utilizing an emerging 2D material, Janus transition metal dichalcogenides (TMDs). In contrast to conventional TMDs, monolayer Janus TMDs have two different chalcogen layers sandwiching the transition metal and thus exhibit broken mirror symmetry and an intrinsic vertical dipole moment.
View Article and Find Full Text PDFTwo-dimensional (2D) palladium diselenide (PdSe ) has strong interlayer coupling and a puckered pentagonal structure, leading to remarkable layer-dependent electronic structures and highly anisotropic in-plane optical and electronic properties. However, the lack of high-quality, 2D PdSe crystals grown by bottom-up approaches limits the study of their exotic properties and practical applications. In this work, chemical vapor deposition growth of highly crystalline few-layer (≥2 layers) PdSe crystals on various substrates is reported.
View Article and Find Full Text PDF