Publications by authors named "Wesley D Tennyson"

Boron-doped carbon nanostructures have attracted great interest recently because of their remarkable electrocatalytic performance comparable to or better than that of conventional metal catalysts. In a previous work (, 605 ()), we reported that along with significant performance improvement, B doping enhances the oxidation resistance of few-layer graphene (FLG) that provides increased structural stability for intermediate-temperature fuel-cell electrodes. In general, detailed characterization of the atomic and electronic structure transformations that occur in B-doped carbon nanostructures during fuel-cell operation is lacking.

View Article and Find Full Text PDF

We use amorphous titania nanoparticle networks produced by pulsed laser vaporization at room temperature as a model system for understanding the mechanism of formation of black titania. Here, we characterize the transformation of amorphous nanoparticles by annealing in pure Ar at 400 °C, the lowest temperature at which black titania was observed. Atomic resolution electron microscopy methods and electron energy loss spectroscopy show that the onset of crystallization occurs by nucleation of an anatase core that is surrounded by an amorphous TiO shell.

View Article and Find Full Text PDF