Chromophobe renal cell carcinoma (chRCC) is a rare subtype of renal cell carcinoma (RCC). Sarcomatoid differentiation is considered a result of dedifferentiation of the primary tumor. The coexistence of both components (chromophobe and sarcomatoid) in a single renal tumor has been infrequently reported.
View Article and Find Full Text PDFBackground: Distant metastasis occurs in the majority of adrenocortical carcinoma (ACC), leading to an extremely poor prognosis. However, the key genes driving ACC metastasis remain unclear.
Methods: Weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis were conducted to identify ACC metastasis-related genes.
Ecol Evol
November 2024
Understanding patterns of biodiversity change is essential as coral reefs experience recurrent cycles of disturbance and recovery. Shifts in the total cover and species composition of habitat-forming corals can have far-reaching consequences, including shifts in coral functional traits and impacts on local fish assemblages. We surveyed coral and fish assemblages along the southern coast of Hainan Island near Sanya, China, in 2006, 2010, and 2018, during a period with repeated mass bleaching events.
View Article and Find Full Text PDFEcol Evol
September 2024
Sci Total Environ
October 2024
Understanding species distribution and the related driving processes is a fundamental issue in ecology. However, incomplete data on reef-building corals in the ecoregions of the South China Sea have hindered a comprehensive understanding of coral distribution patterns and their ecological drivers in the Northwest Pacific (NWP). This study investigated the coral species diversity and distribution patterns in the NWP by collecting species presence/absence data from the South China Sea and compiling an extensive species distribution database for the region, and explored their major environmental drivers.
View Article and Find Full Text PDFSci Total Environ
September 2024
The escalation of global change has resulted in heightened frequencies and intensities of environmental fluctuations within coral reef ecosystems. Corals originating from marginal reefs have potentially enhanced their adaptive capabilities in response to these environmental variations through processes of local adaptation. However, the intricate mechanisms driving this phenomenon remain a subject of limited investigation.
View Article and Find Full Text PDFSexual reproduction of reef-building corals is vital for coral reef ecosystem recovery. Corals allocate limited energy to growth and reproduction, when being under environmental disturbance, which ultimately shapes the community population dynamics. In the present study, energetic and physiological parameters of both parental colonies and larvae of the coral Pocillopora damicornis were measured during their reproduction stage under four temperatures; 28 °C (low-temperature acclimation, LA), 29 °C (control temperature, CT), 31 °C (high-temperature acclimation, HA), and 32 °C (heat stress, HS).
View Article and Find Full Text PDFUnderstanding the acclimation capacity of reef corals across generations to thermal stress and its underlying molecular underpinnings could provide insights into their resilience and adaptive responses to future climate change. Here, we acclimated adult brooding coral Pocillopora damicornis to high temperature (32 °C vs. 29 °C) for three weeks and analyzed the changes in phenotypes, transcriptomes and DNA methylomes of adult corals and their brooded larvae.
View Article and Find Full Text PDFThermal priming of reef corals can enhance their heat tolerance; however, the legacy effects of heat stress during parental brooding on larval resilience remain understudied. This study investigated whether preconditioning adult coral Pocillopora damicornis to high temperatures (29°C and 32°C) could better prepare their larvae for heat stress. Results showed that heat-acclimated adults brooded larvae with reduced symbiont density and shifted thermal performance curves.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
February 2017
N type silicon-rich nanocrystalline-SiN(x) ∶ H films were prepared by plasma enhanced chemical vapor deposition technique by changing NH3 flow rate. The effect of nitrogen incorporation on the microstructure and photoelectric properties of the thin films were characterized by Raman, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectra, and Hall effect measurement. The results indicated that with the increasing NH3, a phase transition from microcrystalline to amorphous silicon occured.
View Article and Find Full Text PDF