Heterozygous missense mutations in cause Weaver syndrome (WS), a developmental disorder characterized by intellectual disability and overgrowth. encodes the enzymatic subunit of Polycomb repressive complex 2 (PRC2), which mediates monomethylation, dimethylation, and trimethylation of histone H3 lysine 27 (H3K27me1/2/3). Most WS-associated EZH2 variants lack functional characterization but are presumed loss-of-function.
View Article and Find Full Text PDFThe Microrchidia (MORC) family of chromatin-remodelling ATPases is pivotal in forming higher-order chromatin structures that suppress transcription. The exact mechanisms of MORC-induced chromatin remodelling have been elusive. Here, we report an in vitro reconstitution of full-length MORC2, the most commonly mutated MORC member, linked to various cancers and neurological disorders.
View Article and Find Full Text PDFNat Struct Mol Biol
March 2025
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organization and dynamics of chromatin compacted by gene-repressing factors are unknown.
View Article and Find Full Text PDFRecombinant macromolecular complexes are often produced by the baculovirus system, using multigene expression vectors. Yet, the construction of baculovirus-compatible multigene expression vectors is complicated and time-consuming. Furthermore, while the baculovirus and yeast are popular protein expression systems, no single method for multigene vector construction is compatible with both.
View Article and Find Full Text PDFPolycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.
View Article and Find Full Text PDFDiverse biochemical, structural, and in vivo data support models for the regulation of polycomb repressive complex 2 (PRC2) activity by RNAs, which may contribute to the maintenance of epigenetic states. Here, we summarize this research and also suggest why it can be difficult to capture biologically relevant PRC2-RNA interactions in living cells.
View Article and Find Full Text PDFNucleic Acids Res
October 2024
MicroRNAs (miRNAs) are short non-coding RNAs involved in various cellular processes, playing a crucial role in gene regulation. Identifying miRNA targets remains a central challenge and is pivotal for elucidating the complex gene regulatory networks. Traditional computational approaches have predominantly focused on identifying miRNA targets through perfect Watson-Crick base pairings within the seed region, referred to as canonical sites.
View Article and Find Full Text PDFHistone modifications are associated with distinct transcriptional states, but it is unclear whether they instruct gene expression. To investigate this, we mutate histone H3.3 K9 and K27 residues in mouse embryonic stem cells (mESCs).
View Article and Find Full Text PDFVariants in the poorly characterised oncoprotein, MORC2, a chromatin remodelling ATPase, lead to defects in epigenetic regulation and DNA damage response. The C-terminal domain (CTD) of MORC2, frequently phosphorylated in DNA damage, promotes cancer progression, but its role in chromatin remodelling remains unclear. Here, we report a molecular characterisation of full-length, phosphorylated MORC2, demonstrating its preference for binding open chromatin and functioning as a DNA sliding clamp.
View Article and Find Full Text PDFPolycomb repressive complex 2 (PRC2) interacts with RNA in cells, but there is no consensus on how RNA regulates PRC2 canonical functions, including chromatin modification and the maintenance of transcription programs in lineage-committed cells. We assayed two separation-of-function mutants of the PRC2 catalytic subunit EZH2, defective in RNA binding but functional in methyltransferase activity. We find that part of the RNA-binding surface of EZH2 is required for chromatin modification, yet this activity is independent of RNA.
View Article and Find Full Text PDFThe chromatin compaction activity of Polycomb group proteins has traditionally been considered essential for transcriptional repression. However, there is very little information on how Polycomb group proteins compact chromatin at the molecular level and no causal link between the compactness of chromatin and transcriptional repression. Recently, a more complete picture of Polycomb-dependent chromatin architecture has started to emerge, owing to advanced methods for imaging and chromosome conformation capture.
View Article and Find Full Text PDFRNA has been implicated in the recruitment of chromatin modifiers, and previous studies have provided evidence in favor and against this idea. RNase treatment of chromatin is commonly used to study RNA-mediated regulation of chromatin modifiers, but the limitations of this approach remain unclear. RNase A treatment during chromatin immunoprecipitation (ChIP) reduces chromatin occupancy of the H3K27me3 methyltransferase Polycomb repressive complex 2 (PRC2).
View Article and Find Full Text PDFNat Struct Mol Biol
October 2023
Chromatin regulation involves the selective recruitment of chromatin factors to facilitate DNA repair, replication and transcription. Here we demonstrate the utility of coupling unbiased functional genomics with chromatin immunoprecipitation (CRISPR-ChIP) to identify the factors associated with active chromatin modifications in mammalian cells. Specifically, an integrated reporter containing a cis-regulatory element of interest and a single guide RNA provide a chromatinized template for a direct readout for regulators of histone modifications associated with actively transcribed genes such as H3K4me3 and H3K79me2.
View Article and Find Full Text PDFPolycomb repressive complex 1 (PRC1) and PRC2 are responsible for epigenetic gene regulation. PRC1 ubiquitinates histone H2A (H2Aub), which subsequently promotes PRC2 to introduce the H3 lysine 27 tri-methyl (H3K27me3) repressive chromatin mark. Although this mechanism provides a link between the two key transcriptional repressors, PRC1 and PRC2, it is unknown how histone-tail dynamics contribute to this process.
View Article and Find Full Text PDFNucleic Acids Res
May 2022
Polycomb group proteins predominantly exist in polycomb repressive complexes (PRCs) that cooperate to maintain the repressed state of thousands of cell-type-specific genes. Targeting PRCs to the correct sites in chromatin is essential for their function. However, the mechanisms by which PRCs are recruited to their target genes in mammals are multifactorial and complex.
View Article and Find Full Text PDFNucleic Acids Res
February 2022
Although the mode of action of the ribosomes, the multi-component universal effective protein-synthesis organelles, has been thoroughly explored, their mere appearance remained elusive. Our earlier comparative structural studies suggested that a universal internal small RNA pocket-like segment called by us the protoribosome, which is still embedded in the contemporary ribosome, is a vestige of the primordial ribosome. Herein, after constructing such pockets, we show using the "fragment reaction" and its analyses by MALDI-TOF and LC-MS mass spectrometry techniques, that several protoribosome constructs are indeed capable of mediating peptide-bond formation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2021
Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity.
View Article and Find Full Text PDFThe polycomb repressive complex 2 (PRC2) is a histone methyltransferase that maintains cell identities. JARID2 is the only accessory subunit of PRC2 that known to trigger an allosteric activation of methyltransferase. Yet, this mechanism cannot be generalised to all PRC2 variants as, in vertebrates, JARID2 is mutually exclusive with most of the accessory subunits of PRC2.
View Article and Find Full Text PDFPRC2 deposits the H3K27me3 repressive mark, which facilitates transcription repression of developmental genes. The decision of whether a particular gene is silenced at a given point during development is heavily dependent on the chromatin context. More than just a simple epigenetic writer, PRC2 employs several distinct chromatin reading capabilities to sense the local chromatin environment and modulate the H3K27me3 writer activity in a context-dependent manner.
View Article and Find Full Text PDFHistone lysine methyltransferases (HKMTs) are key regulators of many cellular processes. By definition, HKMTs catalyse the methylation of lysine residues in histone proteins. The enzymatic activities of HKMTs are under precise control, with their allosteric regulation emerging as a prevalent paradigm.
View Article and Find Full Text PDFSummary: Unbiased detection of protein-protein and protein-RNA interactions within ribonucleoprotein complexes are enabled through crosslinking followed by mass spectrometry. Yet, different methods detect different types of molecular interactions and therefore require the usage of different software packages with limited compatibility. We present crisscrosslinkeR, an R package that maps both protein-protein and protein-RNA interactions detected by different types of approaches for crosslinking with mass spectrometry.
View Article and Find Full Text PDFUbiquitination of chromatin by modification of histone H2A is a critical step in both regulation of DNA repair and regulation of cell fate. These very different outcomes depend on the selective modification of distinct lysine residues in H2A, each by a specific E3 ligase. While polycomb PRC1 complexes modify K119, resulting in gene silencing, the E3 ligase RNF168 modifies K13/15, which is a key event in the response to DNA double-strand breaks.
View Article and Find Full Text PDFNat Struct Mol Biol
March 2019
Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that maintains cell identity during development in multicellular organisms by marking repressed genes and chromatin domains. In addition to four core subunits, PRC2 comprises multiple accessory subunits that vary in their composition during cellular differentiation and define two major holo-PRC2 complexes: PRC2.1 and PRC2.
View Article and Find Full Text PDF