Inseparable RNA binding and chromatin modification activities of a nucleosome-interacting surface in EZH2.

Nat Genet

Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polycomb repressive complex 2 (PRC2) interacts with RNA in cells, but there is no consensus on how RNA regulates PRC2 canonical functions, including chromatin modification and the maintenance of transcription programs in lineage-committed cells. We assayed two separation-of-function mutants of the PRC2 catalytic subunit EZH2, defective in RNA binding but functional in methyltransferase activity. We find that part of the RNA-binding surface of EZH2 is required for chromatin modification, yet this activity is independent of RNA. Mechanistically, the RNA-binding surface within EZH2 is required for chromatin modification in vitro and in cells, through interactions with nucleosomal DNA. Contrarily, an RNA-binding-defective mutant exhibited normal chromatin modification activity in vitro and in lineage-committed cells, accompanied by normal gene repression activity. Collectively, we show that part of the RNA-binding surface of EZH2, rather than the RNA-binding activity per se, is required for the histone methylation in vitro and in cells, through interactions with the substrate nucleosome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176075PMC
http://dx.doi.org/10.1038/s41588-024-01740-8DOI Listing

Publication Analysis

Top Keywords

chromatin modification
20
surface ezh2
16
rna-binding surface
12
rna binding
8
lineage-committed cells
8
ezh2 required
8
required chromatin
8
modification activity
8
vitro cells
8
cells interactions
8

Similar Publications

Study Question: What is the effect of hCG on the epigenetic profile and the expression of other molecular factors in endometrial stromal cells (ESCs)?

Summary Answer: Our findings suggest that hCG treatment alters the molecular environment of decidualized ESCs, potentially influencing implantation and immune regulation through epigenetic modifications and changes in the levels of secreted proteins and micro-ribonucleic acids (miRNAs).

What Is Known Already: Embryo implantation depends not only on the quality of the embryo but also on the receptivity of the endometrium, the specialized lining of the uterus that undergoes dynamic changes to support pregnancy. Effective communication between the maternal and fetal compartments, facilitated by molecular signals and cellular interactions, is essential for successful implantation.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) relevant to osteoporosis have identified hundreds of loci; however, understanding how these variants influence the phenotype is complicated because most reside in non-coding DNA sequence that serves as transcriptional enhancers and repressors. To advance knowledge on these regulatory elements in osteoclasts (OCs), we performed Micro-C analysis, which informs on the genome topology of these cells and integrated the results with transcriptome and GWAS data to further define loci linked to BMD. Using blood cells isolated from 4 healthy participants aged 31-61 yr, we cultured OC in vitro and generated a Micro-C chromatin conformation capture dataset.

View Article and Find Full Text PDF

Epigenetic regulation of bladder cancer in the context of aging.

Front Pharmacol

August 2025

Stem Cell Research Center, Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China.

Bladder cancer (BC) is a disease that predominantly affects older adults, with aging playing a critical role in its onset and progression. Age-associated phenomena, including immunosenescence and chronic inflammation, form a pro-tumor milieu, while genomic instability and epigenetic drift further increase cancer risk. The review highlights the dual role of DNA methylation in BC: global hypomethylation can activate transposable elements and oncogenes, whereas focal hypermethylation silences tumor-suppressor genes like CDKN2A, especially detrimental in older tissues that rely on these genes for senescence control.

View Article and Find Full Text PDF

Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.

View Article and Find Full Text PDF

ATPase-deficient CHD7 disease variant disrupts neural development via chromatin dysregulation.

J Genet Genomics

September 2025

Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Sh

Chromodomain helicase DNA binding protein 7 (CHD7), an ATP-dependent chromatin remodeler, plays versatile roles in neurodevelopment. However, the functional significance of its ATPase/nucleosome remodeling activity remains incompletely understood. Here, we generate genetically engineered mouse embryonic stem cell lines harboring either an inducible Chd7 knockout or an ATPase-deficient missense variant identified in individuals with CHD7-related disorders.

View Article and Find Full Text PDF