98%
921
2 minutes
20
Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521686 | PMC |
http://dx.doi.org/10.1073/pnas.2100198118 | DOI Listing |
Zool Res
September 2025
Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China. E-mail:
Chromatin remodeling and transcriptional reprogramming play critical roles during mammalian meiotic prophase I; however, the precise mechanisms regulating these processes remain poorly understood. Our previous work demonstrated that deletion of heat shock factor 5 (HSF5), a member of the heat shock factor family, induces meiotic arrest and male infertility. However, the molecular pathways through which HSF5 governs meiotic progression have not yet been fully elucidated.
View Article and Find Full Text PDFTargeted regulation of 70 kilodalton Heat Shock Protein (HSP70) chaperones, particularly the essential cognate heat shock protein (HSC70) and its ortholog, HSP-1, may hold the key to improving cellular proteostasis and ameliorating aging-associated conditions linked to protein misfolding and aggregation. However, tools to selectively modulate HSP70 chaperone activity remain elusive. In this study, we pioneer the development of two novel nanobodies, B12 and H5, which specifically bind to both recombinant and endogenous HSP-1.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2025
Department of Biochemistry 1, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.
Transfer RNAs (tRNAs) are widely recognized for their role in translation. Here, we describe a previously unidentified function of tRNA as an assembly chaperone. During poxviral infection, tRNA lacking the anticodon mcmsU34 modification is specifically sequestered from the cellular tRNA pool to promote formation of a multisubunit poxviral RNA polymerase complex (vRNAP).
View Article and Find Full Text PDFBiology (Basel)
August 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
Molecular chaperones, especially heat shock proteins (HSPs) have vital functions in cells' responses to stress. Here, we cloned and sequenced the complete complementary DNA encoding HSP90 () from the shrimp . The cDNA comprised 3162 bp, including a 2172 bp coding region encoding a 724 amino acid-protein (predicted molecular mass = 83.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
The gram-positive bacterium is widely used for enzyme production, especially due to its superior protein secretion capacity. In this study, we have investigated how efficient transcriptome analysis can identify general and protein-specific secretion stress. For this, we constructed strains overproducing different commercially relevant proteins, including a GFP-specific camelid nanobody (GFPnb), the xylanase XynA and the protein glutaminase PrgA, and expressed these proteins either from the strong constitutive P promoter or from the xylose-inducible P promoter.
View Article and Find Full Text PDF