Publications by authors named "Charles D Imbusch"

The lysine-specific demethylase 1 (LSD1) regulates hematopoietic stem cell differentiation and has been identified as a therapeutic target in hematological disorders. LSD1 demethylates mono and dimethylated histones 3 at lysine 4 and 9. In addition, it acts as a scaffold for the formation of chromatin-modifying complexes that regulates the transcription of myeloid-lineage-specific genes in complex with GFI1, a transcriptional repressor.

View Article and Find Full Text PDF

CD4 regulatory T (T) cells in tissues play crucial immunoregulatory and regenerative roles. Despite their importance, the epigenetics and differentiation of human tissue T cells are incompletely understood. Here, we performed genome-wide DNA methylation analysis of human T cells from skin and blood and integrated these data into a multiomic framework, including chromatin accessibility and gene expression.

View Article and Find Full Text PDF

Supervised and unsupervised methods have emerged to address the complexity of single cell data analysis in the context of large pools of independent studies. Here, we present ClusterFoldSimilarity (CFS), a novel statistical method design to quantify the similarity between cell groups across any number of independent datasets, without the need for data correction or integration. By bypassing these processes, CFS avoids the introduction of artifacts and loss of information, offering a simple, efficient, and scalable solution.

View Article and Find Full Text PDF

Beyond first line, the prognosis of relapsed/refractory (R/R) acute myeloid leukemia (AML) patients is poor with limited treatment options. Bemcentinib is an orally bioavailable, potent, highly selective inhibitor of AXL, a receptor tyrosine kinase associated with poor prognosis, chemotherapy resistance and decreased antitumor immune response. We report bemcentinib monotherapy and bemcentinib+low-dose cytarabine combination therapy arms from the completed BerGenBio-funded open-label Phase 1/2b trial NCT02488408 ( www.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the long-term effects of multiple myeloma and its treatment on the immune system of cancer survivors, finding significant changes even years after being cancer-free.
  • Analysis revealed that these survivors have a compromised bone marrow environment, which is linked to ongoing inflammation and the presence of residual myeloma cells, despite the absence of detectable cancer.
  • The research suggests that initial cancer treatment leads to lasting "immunological scarring," indicating that some immune system changes may be irreversible.
View Article and Find Full Text PDF

Phenotypic plasticity is a cause of glioblastoma therapy failure. We previously showed that suppressing the oligodendrocyte-lineage regulator SOX10 promotes glioblastoma progression. Here, we analyze SOX10-mediated phenotypic plasticity and exploit it for glioblastoma therapy design.

View Article and Find Full Text PDF

Tissue adaptation is required for regulatory T (Treg) cell function within organs. Whether this program shares aspects with other tissue-localized immune populations is unclear. Here, we analyzed single-cell chromatin accessibility data, including the transposable element (TE) landscape of CD45 immune cells from colon, skin, adipose tissue, and spleen.

View Article and Find Full Text PDF
Article Synopsis
  • Circulating tumor cells (CTCs) are critical for understanding tumor diversity and treatment resistance, but traditional methods often capture low numbers, especially in non-small cell lung cancer (NSCLC).
  • This study utilized diagnostic leukapheresis (DLA) on six advanced NSCLC patients to access larger blood volumes and employed a new two-step method to enrich CTCs for analysis.
  • The results unveiled 3,363 unique CTC transcriptomes, revealing significant heterogeneity and potential distinct phenotypes, which suggests CTCs can serve as valuable indicators for tumor monitoring and targeted therapies in the future.
View Article and Find Full Text PDF

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling.

View Article and Find Full Text PDF

Chromosome instability (CIN) contributes to resistance to therapies and tumor evolution. Although natural killer (NK) cells can eliminate cells with complex karyotypes, high-CIN human tumors have an immunosuppressive phenotype. To understand which CIN-associated molecular features alter immune recognition during tumor evolution, we overexpress Polo-like kinase 1 (Plk1) in a Her2 breast cancer model.

View Article and Find Full Text PDF

Background & Aims: As pancreatic ductal adenocarcinoma (PDAC) continues to be recalcitrant to therapeutic interventions, including poor response to immunotherapy, albeit effective in other solid malignancies, a more nuanced understanding of the immune microenvironment in PDAC is urgently needed. We aimed to unveil a detailed view of the immune micromilieu in PDAC using a spatially resolved multimodal single-cell approach.

Methods: We applied single-cell RNA sequencing, spatial transcriptomics, multiplex immunohistochemistry, and mass cytometry to profile the immune compartment in treatment-naïve PDAC tumors and matched adjacent normal pancreatic tissue, as well as in the systemic circulation.

View Article and Find Full Text PDF

Patients with chronic obstructive pulmonary disease (COPD) are still waiting for curative treatments. Considering its environmental cause, we hypothesized that COPD will be associated with altered epigenetic signaling in lung cells. We generated genome-wide DNA methylation maps at single CpG resolution of primary human lung fibroblasts (HLFs) across COPD stages.

View Article and Find Full Text PDF

Despite extensive studies on the chromatin landscape of exhausted T cells, the transcriptional wiring underlying the heterogeneous functional and dysfunctional states of human tumor-infiltrating lymphocytes (TILs) is incompletely understood. Here, we identify gene-regulatory landscapes in a wide breadth of functional and dysfunctional CD8 TIL states covering four cancer entities using single-cell chromatin profiling. We map enhancer-promoter interactions in human TILs by integrating single-cell chromatin accessibility with single-cell RNA-seq data from tumor-entity-matching samples and prioritize cell-state-specific genes by super-enhancer analysis.

View Article and Find Full Text PDF

Objectives: Immune checkpoint inhibitors (ICI) have significantly improved outcome of patients with advanced NSCLC and recently also showed benefit in early-stage disease. Patients with oligometastatic disease (OMD) harbor limited metastases, resectable primary tumors and derive benefit from treatment with multimodal locally ablative and systemic therapy approaches. Nothing is known about feasibility and efficacy of neoadjuvant ICI in this setting.

View Article and Find Full Text PDF

negative myeloproliferative neoplasms (MPNs) consist of essential thrombocythemia, polycythemia vera, and myelofibrosis. The majority of patients harbor the -activating mutation V617F. JAK2 inhibitors were shown to reduce symptom burden and splenomegaly in MPN patients.

View Article and Find Full Text PDF

Introduction: The prognosis of pancreatic cancer has improved only modestly in recent years. This is partly due to the lack of development in precision oncology including immune oncology in this entity. Rearrangements of the proto-oncogene tyrosine protein kinase ROS1 gene represent driver alterations found especially in lung cancer.

View Article and Find Full Text PDF

Background: Soft-tissue sarcomas (STS) are a heterogeneous group of mesenchymal tumors for which response to immunotherapies is not well established. Therefore, it is important to risk-stratify and identify STS patients who will most likely benefit from these treatments.

Results: To reveal shared and distinct methylation signatures present in STS, we performed unsupervised deconvolution of DNA methylation data from the TCGA sarcoma and an independent validation cohort.

View Article and Find Full Text PDF

Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements.

View Article and Find Full Text PDF

Regulatory T cells are important regulators of the immune system and have versatile functions for the homeostasis and repair of tissues. They express the forkhead box transcription factor Foxp3 as a lineage-defining protein. Negative regulators of Foxp3 expression are not well understood.

View Article and Find Full Text PDF

Specialized regulatory T (Treg) cells accumulate and perform homeostatic and regenerative functions in nonlymphoid tissues. Whether common precursors for nonlymphoid-tissue Treg cells exist and how they differentiate remain elusive. Using transcription factor nuclear factor, interleukin 3 regulated (Nfil3) reporter mice and single-cell RNA-sequencing (scRNA-seq), we identified two precursor stages of interleukin 33 (IL-33) receptor ST2-expressing nonlymphoid tissue Treg cells, which resided in the spleen and lymph nodes.

View Article and Find Full Text PDF

The transcriptional regulator Rbpj is involved in T-helper (T) subset polarization, but its function in T cells remains unclear. Here we show that T-specific Rbpj deletion leads to splenomegaly and lymphadenopathy despite increased numbers of T cells with a polyclonal TCR repertoire. A specific defect of Rbpj-deficient T cells in controlling T2 polarization and B cell responses is observed, leading to the spontaneous formation of germinal centers and a T2-associated immunoglobulin class switch.

View Article and Find Full Text PDF

DNA methylation changes are dynamic processes which occur at cytosines of CpG dinucleotides and contribute to normal development but also to diseases. DNA methylation changes are most effective in promoters and enhancers, the former frequently being CpG-rich and the latter, in contrast, CpG-poor. Many genome-wide methods for DNA methylation analysis interrogate predominantly CpG-rich regions and, hence, spare enhancers and other potentially important genomic regions.

View Article and Find Full Text PDF

Background: Bidirectional promoters (BPs) are prevalent in eukaryotic genomes. However, it is poorly understood how the cell integrates different epigenomic information, such as transcription factor (TF) binding and chromatin marks, to drive gene expression at BPs. Single-cell sequencing technologies are revolutionizing the field of genome biology.

View Article and Find Full Text PDF