98%
921
2 minutes
20
CD4 regulatory T (T) cells in tissues play crucial immunoregulatory and regenerative roles. Despite their importance, the epigenetics and differentiation of human tissue T cells are incompletely understood. Here, we performed genome-wide DNA methylation analysis of human T cells from skin and blood and integrated these data into a multiomic framework, including chromatin accessibility and gene expression. This analysis identified programs that governed the tissue adaptation of skin T cells. We found that subfamilies of transposable elements represented a major constituent of the hypomethylated landscape in tissue T cells. Based on T cell antigen receptor sequence and DNA hypomethylation homologies, our data indicate that blood CCR8 T cells contain recirculating human skin T cells. Conversely, differences in chromatin accessibility and gene expression suggest a certain reversal of the tissue adaptation program during recirculation. Our findings provide insights into the biology of human tissue T cells, which may help harness these cells for therapeutic purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307226 | PMC |
http://dx.doi.org/10.1038/s41590-025-02210-x | DOI Listing |
FASEB J
September 2025
Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Arencibia Clinic, San Sebastian, Spain.
Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.
View Article and Find Full Text PDFAdv Exp Med Biol
September 2025
Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, South Korea.
Background: Neurotraumatic conditions, such as spinal cord injury, brain injury, and neurodegenerative conditions, such as amyotrophic lateral sclerosis, pose a challenge to the field of rehabilitation for its complexity and nuances in management. For decades, the use of cell therapy in treatment of neurorehabilitation conditions have been explored to complement the current, mainstay treatment options; however, a consensus for standardization of the cell therapy and its efficacy has not been reached in the medical community. This study aims to provide a comparative review on the very topic of cell therapy use in neurorehabilitation conditions in an attempt to bridge the gap in knowledge.
View Article and Find Full Text PDFCell Tissue Bank
September 2025
Eurofins Donor & Product Testing, LLC, Centennial, CO, USA.
In the United States, the use of Food & Drug Administration (FDA)-licensed, approved, or cleared tests is required for infectious disease screening and determining the eligibility of deceased donors for all Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps). With the discontinuation of two manual enzyme-linked immunoassay (EIA) tests, automated Chemiluminescent Microparticle Immunoassay (CMIA) technology was introduced as the primary alternative. This study compares serologic reactivity rates between manual EIA and automated CMIA methods.
View Article and Find Full Text PDF