4-Octyl itaconate (4-OI), a derivative of itaconate, inhibits inflammation by alkylating its target proteins. Here, we present a click-chemistry-based protocol for detecting 4-OI-alkylated proteins in mouse primary bone-marrow-derived macrophages (BMDMs) by using an itaconate-alkyne (ITalk) probe. We describe steps for culturing and treating BMDMs and details on using click chemistry in the cell lysate.
View Article and Find Full Text PDFResearch (Wash D C)
February 2024
The ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with fork head-associated domain)-TRAF6 signaling pathway plays a pivotal role in regulating inflammatory processes, with TIFA and TRAF6 serving as key molecules in this cascade. Despite its significance, the functional mechanism of TIFA-TRAF6 remains incompletely understood. In this study, we unveil that TIFA undergoes liquid-liquid phase separation (LLPS) induced by ALPK1 in response to adenosine diphosphate (ADP)-β-D-manno-heptose (ADP-Hep) recognition.
View Article and Find Full Text PDFCell Rep
September 2023
The cyclic guanosine monophosphate adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in defending foreign pathogens and maintaining immune homeostasis. While substantial advances have been made in understanding the metabolic changes that occur during macrophage activation, little is known about how these metabolic changes affect the cGAS-STING axis. In this study, we identify that 4-octyl itaconate (4-OI), a derivative of itaconate, inhibits the activation of cGAS-STING.
View Article and Find Full Text PDFCyclic GMP-AMP synthase (cGAS) binds to microbial and self-DNA in the cytosol and synthesizes cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING) and downstream mediators to elicit an innate immune response. Regulation of cGAS activity is essential for immune homeostasis. Here, we identified the E3 ubiquitin ligase MARCH8 (also known as MARCHF8, c-MIR, and RNF178) as a negative regulator of cGAS-mediated signaling.
View Article and Find Full Text PDFJ Exp Med
September 2019
Conventional type 1 dendritic cells (cDC1s) are inherently resistant to many viruses but, paradoxically, possess fewer acidic phagosomes that enable antigen retention and cross-presentation. We report that palmitoyl-protein thioesterase 1 (PPT1), which catabolizes lipid-modified proteins in neurons, is highly expressed in cDC1s. PPT1-deficient DCs are more susceptible to vesicular stomatitis virus (VSV) infection, and mice with PPT1 deficiency in cDC1s show impaired response to VSV.
View Article and Find Full Text PDF