Publications by authors named "Celia Duce"

Animal glues have been used since antiquity, but their popularity decreased in the twentieth century with the rise of synthetic adhesives. Currently they are primarily used in restoration of works of art. This study focuses on animal glue samples derived from bone and hide tissues used mainly for veiling and carpentry applications, examining their secondary structure, thermal and rheological properties, to shed light into their adhesive behaviour.

View Article and Find Full Text PDF

Biomass-derived activated carbons play an important role in H storage applications since their structural and chemical properties can be modulated by adjusting the activating methods and experimental parameters as well as by functionalization with heteroatoms. However, unfavorable reaction conditions are usually required, which may compromise the carbonaceous framework, negatively impacting on the hydrogen storage performance. In this context, this work investigates the potential modification effects of different solvents on activated carbons (ACs) under mild conditions, with a focus on structural and textural rearrangements.

View Article and Find Full Text PDF

Understanding paint structures at the nanoscopic level can address key questions related to artistic techniques, paint formulation, and long-term preservation of artworks. This involves examining spatial chemical complexity, the formation of molecular networks, and interactions between organic and inorganic constituents. Depending on the paint preparation methods, proteins and drying oils, the most common binders in traditional artistic practices, can be integrated to produce paints with diverse structures and nanoscale chemical intricacies.

View Article and Find Full Text PDF

Lewis/Brønsted acidic deep eutectic solvents (LBDESs) are a recent class of solvents that combine the two types of acidity. In some cases, this synergy leads to enhanced catalytic properties for many reactions and applications. For this reason, it is important to discover more LBDESs.

View Article and Find Full Text PDF

Pyrolysis in an inert atmosphere is a widely applied route to convert tannery wastes into reusable materials. In the present study, the Cr(III) conversion into the toxic hexavalent form in the pyrolyzed tannery waste referred to as KEU was investigated. Ageing experiments and leaching tests demonstrated that the Cr(III)-Cr(VI) inter-conversion occurs in the presence of air at ambient temperature, enhanced by wet environmental conditions.

View Article and Find Full Text PDF

Acrylonitrile butadiene styrene (ABS) is a thermoplastic polymer widely used in several everyday life applications; moreover, it is also one of the most employed plastics in contemporary artworks and design objects. In this study, the chemical and thermal properties of an ABS-based polymer and its photo-degradation process were investigated through a multi-analytical approach based on thermal, mass spectrometric and spectroscopic techniques. LEGO building blocks were selected for studying the ABS properties.

View Article and Find Full Text PDF

In this work we propose the use of isothermal thermogravimetry to evaluate the oxidative stability of a lipid and to evaluate how the glyceride composition affects the entire oxidative process, to quantify the oxidation undertaken by the lipid, and numerically compare the oxidative behaviour of different lipids. The innovative aspect of the present method lies in the acquisition of a prolonged "oxygen uptake" curve (4000-10,000 min) of a lipid under oxygen and in the development of a semi-empirical fitting equation for the experimental data. This provides the induction period (oxidative stability), and allows to evaluate the rate of oxidation, the rate and the magnitude of oxidative degradation, the overall mass loss and the mass of oxygen taken by the lipid upon time.

View Article and Find Full Text PDF

Old Masters like Botticelli used paints containing mixtures of oils and proteins, but "how" and "why" this was done is still not understood. Here, egg yolk is used in combination with two pigments to evaluate how different repartition of proteinaceous binder can be used to control the flow behavior as well as drying kinetics and chemistry of oil paints. Stiff paints enabling pronounced impasto can be achieved, but paint stiffening due to undesired uptake of humidity from the environment can also be suppressed, depending on proteinaceous binder distribution and colloidal paint microstructure.

View Article and Find Full Text PDF

Poultry feathers are among the most abundant and polluting keratin-rich waste biomasses. In this work, we developed a one-pot microwave-assisted process for eco-friendly keratin extraction from poultry feathers followed by a direct electrospinning (ES) of the raw extract, without further purification, to obtain keratin-based bioplastics. This microwave-assisted keratin extraction (MAE) was conducted in acetic acid 70% .

View Article and Find Full Text PDF

A molecular-level understanding of the structure of the polymeric network formed upon the curing of air-drying artists' oil paints still represents a challenge. In this study we used a set of analytical methodologies classically employed for the characterisation of a paint film-based on infrared spectroscopy and mass spectrometry-in combination with solid state NMR (SSNMR), to characterise model paint layers which present different behaviours towards surface cleaning with water, a commonly applied procedure in art conservation. The study demonstrates, with the fundamental contribution of SSNMR, a relationship between the painting stability and the chemical structure of the polymeric network.

View Article and Find Full Text PDF

Gelatin is a natural biopolymer extensively used for tissue engineering applications due to its similarities to the native extracellular matrix. However, the rheological properties of gelatin formulations are not ideal for extrusion-based bioprinting. In this work, we present an approach to improve gelatin bioprinting performances by using pectin as a rheology modifier of gelatin and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) as a gelatin-pectin crosslinking agent.

View Article and Find Full Text PDF

In this work, we have analysed the binding of the Pt(II) complexes ([PtCl(4'-phenyl-2,2':6',2″-terpyridine)](CFSO) (), [PtI(4'-phenyl-2,2':6',2″-terpyridine)](CFSO) () and [PtCl(1,3-di(2-pyridyl)benzene) ()] with selected model proteins (hen egg-white lysozyme, HEWL, and ribonuclease A, RNase A). Platinum coordination compounds are intensively studied to develop improved anticancer agents. In this regard, a critical issue is the possible role of Pt-protein interactions in their mechanisms of action.

View Article and Find Full Text PDF

Polyphosphoesters (PPEs), a versatile class of biodegradable and biocompatible polymers, have been proposed as alternatives to poly(ethylene glycol) (PEG), which is suspected to be responsible for anaphylactic reactions in some patients after the administration of PEGylated compounds, e.g., in the current Covid-19 vaccines.

View Article and Find Full Text PDF

The 20th and 21st century oil paintings are presenting a range of challenging conservation problems that can be distinctly different from those noted in paintings from previous centuries. These include the formation of vulnerable surface "skins" of medium and exudates on paint surfaces, efflorescence, unpredictable water and solvent sensitivity, and incidence of paint dripping which can occur within a few years after the paintings were completed. Physicochemical studies of modern oil paints and paintings in recent years have identified a range of possible causal factors for the noted sensitivity of painting surfaces to water and protic solvents, including the formation of water-soluble inorganic salts and/or the accumulation of diacids at the paint surface, which are oxidation products of the oil binder.

View Article and Find Full Text PDF

Polydimethylsiloxane (PDMS) polymers are extensively used in a wide range of research and industrial fields, due to their highly versatile chemical, physical, and biological properties. Besides the different two-dimensional PDMS formulations available, three-dimensional PDMS foams have attracted increased attention. However, as-prepared PDMS foams contain residual unreacted low molecular weight species that need to be removed in order to obtain a standard and chemically stable material for use as a scaffold for different decorating agents.

View Article and Find Full Text PDF

Halloysite nanotubes (HNTs) are considered as ideal materials for biotechnological and medical applications. An important feature of halloysite is that it has a different surface chemistry on the inner and outer sides of the tubes. This property means that negatively-charged molecules can be selectively loaded inside the halloysite nanoscale its lumen.

View Article and Find Full Text PDF

Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer.

View Article and Find Full Text PDF

We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm(-1) and an increase in bands in the region 1730-1680 cm(-1) due to carbonyl stretching.

View Article and Find Full Text PDF

The degradation of the proteinaceous binders, ovalbumin (OVA) and casein, and their interactions with azurite (Cu(3)(CO(3))(2)(OH)(2)), calcium carbonate (CaCO(3)), hematite (Fe(2)O(3)) and red lead (Pb(3)O(4)) pigments were studied. A multi-analytical approach based on Thermogravimetric Analysis (TG), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Size Exclusion Chromatography (SEC) was used. The research was carried out on a set of paint reconstructions, which were analysed before and after artificial light ageing.

View Article and Find Full Text PDF

This paper presents an analytical investigation of paint reconstructions prepared with linseed oil that have undergone typical 19th century treatments in preparation for painting. The oil was mechanically extracted from the same seed lot, which was then processed by various methods: water washing, heat treatments, and the addition of driers, with and without heat. A modern process lead white (Dutch source, Schoonhoven) and a commercially available vine black were used as pigments.

View Article and Find Full Text PDF

In this work, we characterized paint reconstructions using ovalbumin and casein as binders, and cinnabar (HgS) as a pigment, before and after artificial ageing. Egg and casein are common paint binders that were used historically in the technique of tempera painting. Despite extensive research on the identification of proteinaceous binders in paintings, there is a substantial lack of knowledge regarding the ageing pathway of their protein content, and their chemical interaction with inorganic pigments.

View Article and Find Full Text PDF

The glass transition temperature (Tg ) of acrylic and methacrylic random copolymers was investigated by means of Quantitative Structure-Property Relationship (QSPR) methodology based on Recursive Neural Networks (RNN). This method can directly take molecular structures as input, in the form of labelled trees, without needing predefined descriptors. It was applied to three data sets containing up to 615 polymers (340 homopolymers and 275 copolymers).

View Article and Find Full Text PDF

This paper reports some recent results from the empirical evaluation of different types of structured molecular representations used in QSPR analysis through a recursive neural network (RNN) model, which allows for their direct use without the need for measuring or computing molecular descriptors. This RNN methodology has been applied to the prediction of the properties of small molecules and polymers. In particular, three different descriptions of cyclic moieties, namely group, template and cyclebreak have been proposed.

View Article and Find Full Text PDF

The effects of end groups on KEK peptide conformational characteristics and self-assembling properties in water solution are investigated by using long lasting all-atom molecular dynamics simulations. The analysis of the structural macroscopic and microscopic properties and the examination of intra- and intermolecular interactions suggest, in agreement with experimental observations, the role played by side chains and terminal regions in determining the characteristic features of the assemblages. Competition between intra- and interchain interactions greatly affects the diffusivity of peptide molecules and the conformational space that they can sample, ultimately controlling the shape, size, and distribution of the aggregate configurations.

View Article and Find Full Text PDF

In this paper, we report on the potential of a recently developed neural network for structures applied to the prediction of physical chemical properties of compounds. The proposed recursive neural network (RecNN) model is able to directly take as input a structured representation of the molecule and to model a direct and adaptive relationship between the molecular structure and target property. Therefore, it combines in a learning system the flexibility and general advantages of a neural network model with the representational power of a structured domain.

View Article and Find Full Text PDF