A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

QSPR Analysis of Copolymers by Recursive Neural Networks: Prediction of the Glass Transition Temperature of (Meth)acrylic Random Copolymers. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The glass transition temperature (Tg ) of acrylic and methacrylic random copolymers was investigated by means of Quantitative Structure-Property Relationship (QSPR) methodology based on Recursive Neural Networks (RNN). This method can directly take molecular structures as input, in the form of labelled trees, without needing predefined descriptors. It was applied to three data sets containing up to 615 polymers (340 homopolymers and 275 copolymers). The adopted representation was able to account for the structure of the repeating unit as well as average macromolecular characteristics, such as stereoregularity and molar composition. The best result, obtained on a data set focused on copolymers, showed a Mean Average Residual (MAR) of 4.9 K, a standard error of prediction (S) of 6.1 K and a squared correlation coefficient (R(2) ) of 0.98 for the test set, with an optimal rate with respect to the training error. Through the treatment of homopolymers and copolymers both as separated and merged data sets, we also showed that the proposed approach is particularly suited for generalizing prediction of polymer properties to various types of chemical structures in a uniform setting.

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.201000079DOI Listing

Publication Analysis

Top Keywords

recursive neural
8
neural networks
8
glass transition
8
transition temperature
8
methacrylic random
8
random copolymers
8
data sets
8
copolymers
5
qspr analysis
4
analysis copolymers
4

Similar Publications