98%
921
2 minutes
20
Halloysite nanotubes (HNTs) are considered as ideal materials for biotechnological and medical applications. An important feature of halloysite is that it has a different surface chemistry on the inner and outer sides of the tubes. This property means that negatively-charged molecules can be selectively loaded inside the halloysite nanoscale its lumen. Loaded HNTs can be used for the controlled or sustained release of proteins, drugs, bioactive molecules and other agents. We studied the interaction between HNTs and bovine serum albumin, α lactalbumin and β -lactoglobulin loaded into HTNs using Fourier transform infrared spectroscopy and thermogravimetry. These techniques enabled us to study the protein conformation and thermal stability, respectively, and to estimate the amount of protein loaded into the HNTs. TEM images confirmed the loading of proteins into HTNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/28/5/055706 | DOI Listing |
Clin Exp Dent Res
October 2025
Department of Dentistry, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil.
Objective: Through a scoping review, this study meticulously mapped and characterized these nanostructured clays used to release antibacterial active compounds from direct restorative dental materials.
Material And Methods: The systematic approach involved searches in the PubMed/MEDLINE, Lilacs, Web of Science, Scopus, ScienceDirect, and Embase databases. Two independent and calibrated researchers (kappa: 0.
Biomaterials
August 2025
Nebraska Translational Research Center (NTRC), Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, Omaha, NE, USA. Electronic address:
Large, complex wounds frequently exhibit suboptimal healing, leading to scarring and functional impairment. While bioactive materials and electrical stimulation (ES) show promise, their individual limitations call for novel approaches. This study investigates the combined effects of combining 4-aminopyridine (4AP) and electrical stimulation (ES) on human dermal fibroblasts (hDFBs) using a stable, ionically conductive (IC) chitosan-based scaffold for controlled drug delivery.
View Article and Find Full Text PDFACS Appl Nano Mater
August 2025
Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
A nanocomposite sensor has been developed by integrating halloysite nanotubes (HNTs), kojic acid (K), and Cu ions (HNTK-Cu), marking a significant advancement in the field of dopamine detection. This cutting-edge sensor leverages the synergistic properties of its components to deliver exceptional analytical performance with promising implications for biomedical diagnostics and food safety monitoring. This innovative sensor exploits the unique properties of halloysite nanotubes and kojic acid to achieve a superior performance.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
The Flame-Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China. Electronic address:
Polyvinyl chloride (PVC) is an important plastic, but it has disadvantages such as flammability and high smoke emission, making it urgent to develop green and efficient flame retardants. Inspired by the structure and growth mechanism of coral, we utilized the bio-based polysaccharide material chitosan (CS) to uniformly deposit zinc hydroxystannate (ZHS) onto the surface of halloysite nanotube (HNT), thereby preparing an organic-inorganic nanocomposite flame retardant CS-Zn@HNT. The introduction of CS improved the compatibility of HNT and ZHS in PVC, and CS-Zn@HNT exhibited excellent flame retardant, smoke suppression, and mechanical properties.
View Article and Find Full Text PDFFood Chem
September 2025
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, Xinjiang, PR China. Electronic
This study describes a hydrophobic, structurally reinforced composite aerogel for intelligent packaging, prepared by incorporating beeswax-modified halloysite nanotubes and black rice anthocyanin as a pH indicator. The resulting aerogel exhibited a water contact angle of 121.35° ± 1.
View Article and Find Full Text PDF