Publications by authors named "Canrong Li"

Accumulating evidence indicates that metabolic enzymes can directly couple metabolic signals to transcriptional adaptation and cell differentiation. Glycogen synthase 1 (GYS1), the key metabolic enzyme for glycogenesis, is a nucleocytoplasmic shuttling protein compartmentalized in the cytosol and nucleus. However, the spatiotemporal regulation and biological function of nuclear GYS1 (nGYS1) microcompartments remain unclear.

View Article and Find Full Text PDF

The massive production and widespread use of plastics have resulted in a growing marine plastic pollution problem. Cold seep ecosystems are maintained by microorganisms related to nitrogen and carbon cycling that occur in deep-sea areas, where cold hydrocarbon-rich water seeps from the ocean floor. Little is known about plastic pollution in this ecosystem.

View Article and Find Full Text PDF

The mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is activated on the surface of lysosomes and phosphorylates substrates at various subcellular locations, including the lysosome, cytosol, and nucleus. However, the signaling and biological functions of nuclear mTORC1 (nmTORC1) are not well understood, primarily due to limited tools for monitoring mTORC1 activity in the nucleus. In this study, we developed a genetically encoded nmTORC1 sensor, termed nTORSEL, based on the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4EBP1) by mTORC1 within the nucleus.

View Article and Find Full Text PDF

Marine microplastics pose a significant threat to ecosystems, and deep-sea regions serve as critical sinks for these pollutants. Among these regions, cold seeps harbor relatively high concentrations of microplastics. However, research on the aging of microplastics under low-temperature, dark, methane-abundant, and high-pressure conditions remains limited.

View Article and Find Full Text PDF

Aims: Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined.

View Article and Find Full Text PDF

Background: Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking.

Results: We developed a genetically encoded mTORC1 sensor called TORSEL.

View Article and Find Full Text PDF

In the decades since plastic has become widely used, deep-sea areas, specifically cold seeps, have developed into plastic sinks. Cold seeps contain clean energy natural gas hydrates and act as a barrier reducing methane migration to the upper water column. However, the impacts of microplastics (MPs) on the carbon content in the cold seep remain unclear.

View Article and Find Full Text PDF

Microplastic (MP) pollution is one of the greatest threats to marine ecosystems. Cold seeps are characterized by methane-rich fluid seepage fueling one of the richest ecosystems on the seafloor, and there are approximately more than 900 cold seeps globally. While the long-term evolution of MPs in cold seeps remains unclear.

View Article and Find Full Text PDF

With an increasing quantity of plastic waste being discharged into the oceans, marine microplastic (MP) pollution has received widespread attention. However, the global occurrence characteristics, environmental risks, driving factors, and source-sink relationships remain unclear. In this study, we conducted a meta-analysis based on 165 articles about marine MP pollution.

View Article and Find Full Text PDF

Despite mounting evidence linking pyroptotic cell death to tumor growth, the clinical significance and disease mechanism of pyroptosis in cancer remain uncertain. In this study, we established a unique gene signature ( signature) that can be used as a predictive and prognostic tool in pyroptosis-related cancer subtypes. We found that the 13 core pyroptosis genes exerted opposite prognostic effects in different cancer types, which were subgrouped as pyroptosis positively related cancer and pyroptosis negatively related cancer.

View Article and Find Full Text PDF