J Hazard Mater
August 2025
Isolating microorganisms from oil spill-contaminated environments is essential for advancing bioremediation strategies and discovering novel bioprocesses for hydrocarbon degradation. In this study, we report the isolation of a novel strain, Rhodococcus erythropolis LP27217, from Pertusillo Lake (Italy) on february 2017. Water samples were collected during an oil spill event and microbial community was previously characterized using 16S rRNA gene-targeted metagenomic analysis and functional prediction.
View Article and Find Full Text PDFActions for improving water quality are critical and include the remediation of polluted groundwater. The effectiveness of the remediation strategy to remove contamination by chlorinated solvents may be increased by combining physicochemical treatments (i.e.
View Article and Find Full Text PDFThe article collection entitled "" was launched in September 2021 [...
View Article and Find Full Text PDFAddressing the simultaneous removal of multiple coexisting groundwater contaminants poses a significant challenge, primarily because of their different physicochemical properties. Indeed, different chemical compounds may necessitate establishing distinct, and sometimes conflicting, (bio)degradation and/or removal pathways. In this work, we investigated the concomitant anaerobic treatment of toluene and copper in a single-chamber bioelectrochemical cell with a potential difference of 1 V applied between the anode and the cathode.
View Article and Find Full Text PDFMicrobial reductive dechlorination of organohalogenated pollutants is often limited by the scarcity of electron donors, that can be overcome with microbial electrochemical technologies (METs). In this study, polarized electrodes buried in marine sediment microcosms were investigated to stimulate PCB reductive dechlorination under potentiostatic (-0.7 V vs Ag/AgCl) and galvanostatic conditions (0.
View Article and Find Full Text PDFMarine sediments act as a sink for the accumulation of various organic contaminants such as polychlorobiphenyls (PCBs). These contaminants affect the composition and activity of microbial communities, particularly favoring those capable of thriving from their biodegradation and biotransformation under favorable conditions. Hence, contaminated environments represent a valuable biological resource for the exploration and cultivation of microorganisms with bioremediation potential.
View Article and Find Full Text PDFSubsurface co-contamination by multiple pollutants can be challenging for the design of bioremediation strategies since it may require promoting different and often antagonistic degradation pathways. Here, we investigated the simultaneous degradation of toluene and chloroform (CF) in a continuous-flow anaerobic bioelectrochemical reactor. As a result, 47 μmol L d of toluene and 60 μmol L d of CF were concurrently removed, when the anode was polarized at +0.
View Article and Find Full Text PDFAnaerobic bioremediation is a relevant process in the management of sites contaminated by petroleum hydrocarbons. Recently, interspecies electron transfer processes mediated by conductive minerals or particles have been proposed as mechanisms through which microbial species within a community share reducing equivalents to drive the syntrophic degradation of organic substrates, including hydrocarbons. Here, a microcosm study was set up to investigate the effect of different electrically conductive materials (ECMs) in enhancing the anaerobic biodegradation of hydrocarbons in historically contaminated soil.
View Article and Find Full Text PDFChlorinated solvents still represent an environmental concern that requires sustainable and innovative bioremediation strategies. This study describes the microbiome composition of a novel bioelectrochemical system (BES) based on sequential reductive/oxidative dechlorination for complete perchloroethylene (PCE) removal occurring in two separate but sequential chambers. The BES has been tested under various feeding compositions [i.
View Article and Find Full Text PDFSci Total Environ
November 2022
Electrobioremediation technologies hold considerable potential for the treatment of soils contaminated by petroleum hydrocarbons (PH), since they allow stimulating biodegradation processes with no need for subsurface chemicals injection and with little to no energy consumption. Here, a microbial electrochemical snorkel (MES) was applied for the treatment of a soil contaminated by hydrocarbons. The MES consists of direct coupling of a microbial anode with a cathode, being a single conductive, non-polarized material positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated soil) and the oxic zone (the overlying oxygenated water).
View Article and Find Full Text PDFTowards chlorinated solvents, the effectiveness of the remediation strategy can be improved by combining a biological approach (e.g., anaerobic reductive dechlorination) with chemical/physical treatments (e.
View Article and Find Full Text PDFBioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred.
View Article and Find Full Text PDFCARD-FISH technique allows us to increase microbial cell detection compared to traditional FISH assays. Specific nonfluorescent oligonucleotide probes targeting 16S rRNA genes are employed and are chemically activated by the binding of tyramide molecules, with the latter able to generate a cascade of fluorescence signals, improving sensitivity and reducing background noise. The technique has been successfully applied for the detection of microorganisms in different environmental matrices and under different growth conditions (including those where cells are characterized by low physiological activity and low ribosome content).
View Article and Find Full Text PDFMicrobial communities involving dehalogenating bacteria assist in bioremediation of areas contaminated with halocarbons. To understand molecular interactions between dehalogenating bacteria, we co-cultured Sulfurospirillum multivorans, dechlorinating tetrachloroethene (PCE) to cis-1,2-dichloroethene (cDCE), and Dehalococcoides mccartyi strains BTF08 or 195, dehalogenating PCE to ethene. The co-cultures were cultivated with lactate as electron donor.
View Article and Find Full Text PDFMarine sediments may represent a sink of persistent organic pollutants including polychlorinated biphenyls (PCBs), toxic compounds prone to reductive or oxidative biodegradation pathways depending on the degree of chlorination and the positions of the chlorine atoms on the biphenyl rings. Superficial marine sediments can be subjected to episodic sediment resuspension by boat traffic and wind action causing the exposure of the underlying anaerobic layer to oxygen. Under these dynamic conditions, a deeper knowledge of the adaptation capability of the autochthonous microbial communities towards severe changes of the reaction environment is required.
View Article and Find Full Text PDFThis study investigated the organohalide-respiring bacteria (OHRB) and the supporting microbial populations operating in a pilot scale plant employing poly-3-hydroxybutyrate (PHB), a biodegradable polymer produced by bacteria from waste streams, for the bioremediation of groundwater contaminated by chlorinated solvents. The bioremediation was performed in ground treatment units, including PHB reactors as slow release source of electron donors, where groundwater extracted from the wells flows through before the re-infiltration to the low permeability zones of the aquifer. The coupling of the biological treatment with groundwater recirculation allowed to drastically reducing the contamination level and the remediation time by efficiently stimulating the growth of autochthonous OHRB and enhancing the mobilization of the pollutants.
View Article and Find Full Text PDFIn this study, six PCE-to-ethene dechlorinating cultures, fed with a fermentable substrate (lactate) or hydrogen as electron donor, were obtained from PCB and PCE dechlorinating microcosms constructed with PCB-contaminated marine sediments. A novel Chloroflexi member (OTU-DIS1) affiliated to Dehalococcoidales Incertae Sedis, only distantly related to known dechlorinating bacteria, dominated the enrichment cultures (up to 86% of total OTUs). Sulfate-, thiosulfate- and sulfur-reducing bacteria affiliated to genera Desulfobacter, Dethiosulfatibacter and Desulfuromusa were also found to lesser extent.
View Article and Find Full Text PDFThe composition and metabolic traits of the microbial communities acting in an innovative bioelectrochemical system were here investigated. The system, known as Oil Spill Snorkel, was recently developed to stimulate the oxidative biodegradation of petroleum hydrocarbons in anoxic marine sediments. Next Generation Sequencing was used to describe the microbiome of the bulk sediment and of the biofilm growing attached to the surface of the electrode.
View Article and Find Full Text PDFA pilot-scale study aiming to evaluate the potential use of poly-3-hydroxy-butyrate (PHB) as an electron donor source for in situ bioremediation of chlorinated hydrocarbons in groundwater was conducted. Compared with commercially available electron donors, PHB offers a restricted fermentation pathway (i.e.
View Article and Find Full Text PDFThe toxicity of polychlorinated biphenyls (PCB) can be efficiently reduced in contaminated marine sediments through the reductive dechlorination (RD) process lead by anaerobic organohalide bacteria. Although the process has been extensively investigated on PCB-spiked sediments, the knowledge on the identity and metabolic potential of PCB-dechlorinating microorganisms in real contaminated matrix is still limited. Aim of this study was to explore the composition and the dynamics of the microbial communities of the marine sediment collected from one of the largest Sites of National Interest (SIN) in Italy (Mar Piccolo, Taranto) under conditions promoting the PCBs RD.
View Article and Find Full Text PDFThis study aimed to develop a new assay based on the whole cell hybridization in order to monitor alkane hydroxylase genes (alkB system) of the marine bacterium Alcanivorax borkumensis SK2(T) commonly reported as the predominant microorganism responsible for the biodegradation of n-alkanes which are the major fraction of petroleum hydrocarbons. The assay based on the whole cell hybridization targeting alkB2 gene was successfully developed and calibrated on a pure culture of Alcanivorax borkumensis SK2(T) with a detection efficiency up to 80%. The approach was further successfully validated on hydrocarbon-contaminated seawater and provided cells abundance (6.
View Article and Find Full Text PDF