98%
921
2 minutes
20
In this study, six PCE-to-ethene dechlorinating cultures, fed with a fermentable substrate (lactate) or hydrogen as electron donor, were obtained from PCB and PCE dechlorinating microcosms constructed with PCB-contaminated marine sediments. A novel Chloroflexi member (OTU-DIS1) affiliated to Dehalococcoidales Incertae Sedis, only distantly related to known dechlorinating bacteria, dominated the enrichment cultures (up to 86% of total OTUs). Sulfate-, thiosulfate- and sulfur-reducing bacteria affiliated to genera Desulfobacter, Dethiosulfatibacter and Desulfuromusa were also found to lesser extent. Remarkably, tceA, vcrA and the bifunctional PCE/PCB dehalogenase genes pcbA1, pcbA4 and pcbA5 were found in all dechlorinating microbial enrichments indicating the coexistence of different Dehalococcoides mccartyi strains. The reductive dechlorination rate in each culture remained unvaried over long-term operation (≈ 30 months) and ranged between 0.85 and 0.97 mmol Cl-1 released L-1 d-1 in the lactate-fed microbial enrichments and between 0.66 and 0.85 mmol Cl-1 released L-1 d-1 in the H2-fed microbial enrichments. Overall, this study highlights the presence of yet unexplored biodiversity in PCBs contaminated marine sediments and indicates these environments as promising sources of novel organohalide-respiring bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fix134 | DOI Listing |
Front Microbiol
August 2025
College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China.
Background: Maternal dietary intervention utilizing complex additives rich in β-carotene has demonstrated the capacity to enhance embryonic intestinal development and influence microbial composition in offspring. Nevertheless, the extended impact of maternal β-carotene inclusion on the intestinal health of post-hatching chicks is still not fully elucidated.
Objective: This research aimed to evaluate the impacts of maternal β-carotene supplementation on the intestinal development and microbial communities in chicks after hatching.
Front Microbiol
August 2025
Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom.
Tropical rainforests support critical biogeochemical cycles regulated by complex plant-soil microbial interactions but are threatened by global change. Much of the uniquely biodiverse and carbon rich forest on Borneo has been lost through extensive conversion to monoculture plantation, and a significant proportion of the remaining forest has been heavily modified by selective logging. Ecological restoration of tropical forest aims to return forests to a near pristine state, but restoration initiatives are hindered by limited understanding of the underpinning plant-soil feedbacks, and impacts on soil microbial communities are unresolved.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.
Background: Co-infections of and can significantly increase morbidity and mortality. However, the effect of co-existence on virulence factor secretion and pro-inflammatory effects remain elusive.
Methods: We systematically investigated the virulence factors released by and under different culturing conditions using proteomics.
IMA Fungus
August 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China Institute of Microbiology, Chinese Academy of Sciences Beijing China.
is a widely consumed edible mushroom and the only species currently cultivated on an industrial scale. Despite its economic importance, its trophic strategy and genomic adaptations remain elusive. Here, we presented high-quality, chromosome-level genome assemblies for two sexually compatible monokaryons (PP78 and PP85) of .
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, 528211 Foshan, Guangdong, China.
Background: Neonatal jaundice affects up to 60% of newborns, with pathological cases frequently associated with impaired bilirubin metabolism and gut microbiota dysbiosis. Although evidence implicates gut microbiota in bilirubin metabolism, the precise mechanisms remain incompletely characterized. This study investigated treatment-associated changes in gut microbiota composition, fecal metabolites, and liver function in neonates with hyperbilirubinemia.
View Article and Find Full Text PDF