Publications by authors named "Brajesh K Singh"

Soil food webs are critical for maintaining ecosystem functions but are challenged by various stressors including climate change, habitat destruction and pollution. Although complex multitrophic networks can, in theory, buffer environmental stress, the effects of anthropogenic chemicals on soil food webs under climate change remain poorly understood. Here we propose that the effects of chemical pollution on soil communities have been largely underestimated, particularly for climate change-affected ecosystems.

View Article and Find Full Text PDF

Plants and microbiomes have co-evolved for millennia. Through this co-evolution, microbiomes have become essential for plant nutrient acquisition, which involves plant signaling, microbial sensing, and acquiring and sharing nutrients. In this review, we synthesize recent advancements in the complex associations of molecular, physiological, and eco-evolutionary mechanisms that underpin microbe-facilitated plant nutrient uptake.

View Article and Find Full Text PDF

Plant-microbiome interactions are crucial in maintaining plant health and productivity under stress; however, little is known about these interactions under drought. Here, using wheat as a model, we combine genomics and culture-dependent methods to investigate the interactions between the soil, root, and rhizosphere microbiomes with rhizosphere metabolomes and plant phenotypes. We find that drought conditions promote microbial colonization in plant microbiomes, enriching Streptomyces coeruleorubidus and Leifsonia shinshuensis, while also increasing 4-oxoproline levels in the rhizosphere, potentially attracting S.

View Article and Find Full Text PDF

Global warming is expected to significantly impact the soil fungal and bacterial microbiomes, yet the predominant ecological response of microbial taxa-whether an increase, decrease, or no change-remains unclear. It is also unknown whether microbial taxa from different evolutionary lineages exhibit common patterns and what factors drive these changes. Here, we analyzed three mid-term (> 5 years) warming experiments across contrasting dryland and temperate-boreal ecosystems, encompassing over 500 topsoil samples collected across multiple time points.

View Article and Find Full Text PDF

Healthy soil is vital for ecosystem sustainability and global food security. However, anthropogenic activities that promote intensive agriculture, landscape and biodiversity homogenization, and climate change disrupt soil health. The soil microbiome is a critical component of healthy soils, and increasing evidence suggests that soils with low diversity or homogenized microbial systems are more susceptible to soil pathogen invasion, but the extent and mechanisms that increase the threat of pathogen invasion (i.

View Article and Find Full Text PDF

In the rapidly evolving field of healthcare 5.0, the Internet of Medical Things (IoMT) is expected to be an enabler that allows smart medical devices to collaborate and communicate with healthcare networks to speed up procedures, enhance care, and improve disease management. However, one of the critical issues for these networks still remains the secure and energy-efficient transmission of sensitive patient data.

View Article and Find Full Text PDF

Increased aridity is emerging as a key impact of climate change in terrestrial ecosystems globally. Forest biomes are particularly vulnerable to the impacts of changing environmental conditions due to their long-lived and sessile nature. Microbiomes have coevolved with plants under changing environmental conditions with shared fitness outcomes.

View Article and Find Full Text PDF

Use of synthetic microbial communities (SynComs) is a promising approach that harnesses nature-based solutions to support soil fertility and food security, mitigate climate change impacts, and restore terrestrial ecosystems. Several microbial products are in the market, and many others are at different stages of development and commercialization. Yet, we are still far from being able to fully harness the potential and successful applications of such biotechnological tools.

View Article and Find Full Text PDF

Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell.

View Article and Find Full Text PDF
Article Synopsis
  • Global soil biodiversity and functions face threats due to water availability thresholds, which are not well understood.
  • Analyzing data from 383 global sites shows that these thresholds change how climate, vegetation, and soil properties impact soil biodiversity and functions.
  • In areas with less aridity, vegetation and soil properties play a key role, but in more arid regions, climate becomes the main factor influencing soil biodiversity, particularly affecting soil multidiversity more than multifunctionality.
View Article and Find Full Text PDF
Article Synopsis
  • - The rise of antibiotic resistance genes (ARGs) significantly threatens human health, and phages may contribute to their spread through a process called transduction.
  • - Researchers analyzed over 38,000 bacterial genomes, alongside metagenomic data from various environments, to investigate how human activity affects the distribution and function of phage-encoded ARGs.
  • - Findings indicate that human-impacted habitats show higher levels of ARG diversity and activity, suggesting that human activities have enhanced the movement and transmission of these resistance genes among bacteria globally.
View Article and Find Full Text PDF

Traditionally, antifungal resistance (AFR) has received much less attention compared with bacterial resistance to antibiotics. However, global changes, pandemics, and emerging new fungal infections have highlighted global health consequences of AFR. The recent report of the World Health Organisation (WHO) has identified fungal priority pathogens, and recognised AFR among the greatest global health threats.

View Article and Find Full Text PDF

Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs.

View Article and Find Full Text PDF

Grasslands are integral to maintaining biodiversity and key ecosystem services and are under threat from climate change. Plant and soil microbial diversity, and their interactions, support the provision of multiple ecosystem functions (multifunctionality). However, it remains virtually unknown whether plant and soil microbial diversity explain a unique portion of total variation or shared contributions to supporting multifunctionality across global grasslands.

View Article and Find Full Text PDF

Climate and edaphic properties drive the biogeographic distribution of dominant soil microbial phylotypes in terrestrial ecosystems. However, the impact of plant species and their root nutritional traits on microbial distribution in coastal wetlands remains unclear. Here, we investigated the nutritional traits of 100 halophyte root samples and the bacterial communities in the corresponding soil samples from coastal wetlands across eastern China.

View Article and Find Full Text PDF

Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments.

View Article and Find Full Text PDF

The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils.

View Article and Find Full Text PDF
Article Synopsis
  • Olfactory receptors (Olfr) are G protein-coupled receptors primarily found in olfactory sensory neurons but also play roles in immune responses and cell processes in various tissues, including the spleen.
  • The study showed that specific Olfr genes boost immune signaling pathways and found that mice lacking the Olfr1386 gene exhibited lower immune response levels and improved survival during malaria infections.
  • Nicotinamide adenine dinucleotide (NAD) was identified as a potential ligand for Olfr1386, enhancing immune responses, along with insights that malaria parasite RNA can increase mRNA levels related to immune regulation.
View Article and Find Full Text PDF
Article Synopsis
  • Plant-soil biodiversity interactions are crucial for terrestrial ecosystems, yet it's unclear which specific topsoil microbial and small invertebrate organisms consistently associate with land plants.
  • A field survey of 150 land plant species across 124 locations revealed that these plants only shared less than 1% of the soil organisms, mostly generalist decomposers and phagotrophs, with their presence linked to important functional genes.
  • Environmental factors like aridity, soil pH, and carbon content can significantly disrupt the relationships between land plants and soil organisms, potentially impacting soil ecosystem processes in the face of climate change.
View Article and Find Full Text PDF
Article Synopsis
  • Measles virus (MeV) primarily infects airway surface epithelial cells, where it amplifies before spreading through respiratory droplets like coughing and sneezing.
  • Various polarized epithelial cell lines, including 16HBE14o-, Calu-3, H358, and NuLi-1, are used to study MeV infection and its effects.
  • This chapter outlines the culture conditions, techniques for confirming cell integrity and preparing samples for analysis, and how findings can apply to other respiratory viruses.
View Article and Find Full Text PDF

Drylands account for 45% of the Earth's land area, supporting ~40% of the global population. These regions support some of the most extreme environments on Earth, characterized by extreme temperatures, low and variable rainfall, and low soil fertility. In these biomes, microorganisms provide vital ecosystem services and have evolved distinctive adaptation strategies to endure and flourish in the extreme.

View Article and Find Full Text PDF

Plant-associated diazotrophs strongly relate to plant nitrogen (N) supply and growth. However, our knowledge of diazotrophic community assembly and microbial N metabolism in plant microbiomes is largely limited. Here we examined the assembly and temporal dynamics of diazotrophic communities across multiple compartments (soils, epiphytic and endophytic niches of root and leaf, and grain) of three cereal crops (maize, wheat, and barley) and identified the potential N-cycling pathways in phylloplane microbiomes.

View Article and Find Full Text PDF

The use of microbial inoculant is a promising strategy to improve plant health, but their efficiency often faces challenges due to difficulties in successful microbial colonization in soil environments. To this end, the application of biostimulation products derived from microbes is expected to resolve these barriers via direct interactions with plants or soil pathogens. However, their effectiveness and mechanisms for promoting plant growth and disease resistance remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Moso bamboo (Phyllostachys edulis) exhibits a biennial growth cycle, producing many shoots one year (on-year) and fewer the next (off-year), with variations attributed to soil nutrients and microbial communities.
  • Researchers analyzed 139 soil samples for physicochemical properties across different seasons and years, finding significant changes in microbial composition linked to nutrient levels.
  • Key nutrients were identified as major influencers on soil microbial communities, with 19 specific microbial groups serving as biomarkers for differentiating between on- and off-years, thus contributing to a better understanding of bamboo growth dynamics.
View Article and Find Full Text PDF