In the rapidly evolving field of healthcare 5.0, the Internet of Medical Things (IoMT) is expected to be an enabler that allows smart medical devices to collaborate and communicate with healthcare networks to speed up procedures, enhance care, and improve disease management. However, one of the critical issues for these networks still remains the secure and energy-efficient transmission of sensitive patient data.
View Article and Find Full Text PDFEnviron Int
November 2021
Anthropogenic chemical pollution has the potential to pose one of the largest environmental threats to humanity, but global understanding of the issue remains fragmented. This article presents a comprehensive perspective of the threat of chemical pollution to humanity, emphasising male fertility, cognitive health and food security. There are serious gaps in our understanding of the scale of the threat and the risks posed by the dispersal, mixture and recombination of chemicals in the wider environment.
View Article and Find Full Text PDFEnsuring food security in an environmentally sustainable way is a global challenge. To achieve this agriculture productivity requires increasing by 70 % under increasingly harsh climatic conditions without further damaging the environmental quality (e.g.
View Article and Find Full Text PDFparasites proliferate within circulating red blood cells and are responsible for the deadliest form of human malaria. These parasites are exposed to numerous intrinsic and external sources that could cause DNA damage; therefore, they have evolved efficient mechanisms to protect their genome integrity and allow them to proliferate under such conditions. In higher eukaryotes, double-strand breaks rapidly lead to phosphorylation of the core histone variant H2A.
View Article and Find Full Text PDFIn the original publication of the article, the wrong β-actin blots were pasted in Figs. 1b and 2c. The correct versions of Figs.
View Article and Find Full Text PDFOxidative stress is recognized as one of the major wrongdoers in Parkinson's disease (PD) while glutathione S-transferase (GST), an endogenous antioxidant, protects from oxidative stress-induced neurodegeneration. Despite GST-pi (GST-π) encounters the toxic manifestations in PD, its role in zinc (Zn)-induced nigrostriatal dopaminergic neurodegeneration remains elusive. The study aimed to explore the role of GST-π in Zn-induced Parkinsonism and its underlying molecular mechanism.
View Article and Find Full Text PDFAlpha-synuclein (α-synuclein) aggregation and impairment of the Ubiquitin proteasome system (UPS) are implicated in Parkinson's disease (PD) pathogenesis. While zinc (Zn) induces dopaminergic neurodegeneration resulting in PD phenotype, its effect on protein aggregation and UPS has not yet been deciphered. The current study investigated the role of α-synuclein aggregation and UPS in Zn-induced Parkinsonism.
View Article and Find Full Text PDFThe study aimed to investigate the role of NO and neuronal NO synthase (nNOS) in Zn-induced neurodegeneration. Animals were treated with zinc sulfate (20 mg/kg), twice a week, for 2-12 weeks along with control. In a few sets, animals were also treated with/without a NO donor, sodium nitroprusside (SNP), or S-nitroso-N-acetyl penicillamine (SNAP) for 12 weeks.
View Article and Find Full Text PDFAccumulation of zinc (Zn) in dopaminergic neurons is implicated in Parkinson's disease (PD), and microglial activation plays a critical role in toxin-induced Parkinsonism. Oxidative stress is accused in Zn-induced dopaminergic neurodegeneration; however, its connection with microglial activation is still not known. This study was undertaken to elucidate the role and underlying mechanism of microglial activation in Zn-induced nigrostriatal dopaminergic neurodegeneration.
View Article and Find Full Text PDFCytochrome P4502E1 (CYP2E1), glutathione-S-transferase A4-4 (GSTA4-4), and inducible nitric oxide synthase (iNOS) are implicated in maneb- and paraquat-induced toxicity leading to various pathological conditions. The study aimed to investigate the role of CYP2E1 in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes (PMNs) and its crosstalk with iNOS-mediated nitrosative stress and GSTA4-4-linked protective effect, if any and their consequent links with the nuclear factor erythoid 2-related factor 2 (Nrf2) activation and heme oxygenase-1 (HO-1) expression. Rats were treated with/without maneb and/or paraquat for 1, 2, and 3 weeks along with vehicle controls.
View Article and Find Full Text PDFOxidative stress is one of the major players in the pathogenesis of maneb (MB) and paraquat (PQ)-induced disorders. N-acetyl cysteine (NAC), a glutathione (GSH) precursor and silymarin (SIL), a naturally occurring antioxidant, encounter oxidative stress-mediated cellular damage. The present study was aimed to investigate the effects of NAC and SIL against MB and/or PQ-induced hepatotoxicity in rats.
View Article and Find Full Text PDFAn association between excessive zinc (Zn) accumulation in brain and incidences of Parkinson's disease (PD) has been shown in several epidemiological and experimental investigations. The involvement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and glutathione (GSH) in the pathogenesis of PD has also been proposed in a few studies. Despite the implicated role of oxidative stress in PD, the entire mechanism of Zn-induced dopaminergic neurodegeneration has not yet been clearly understood.
View Article and Find Full Text PDFThe study was undertaken to investigate the effect of zinc (Zn) on glutathione S-transferase (GST) and superoxide dismutases (SOD) activities and on the expressions of cytosolic Cu, Zn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), γ-glutamyl cysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1) in the nigrostriatal tissue of rats. Additionally, Zn-induced alterations in the neurobehavioral parameters, lipid peroxidation (LPO), striatal dopamine and its metabolites and tyrosine hydroxylase (TH) protein expression were measured to assess their correlations with the oxidative stress. Zn exposure reduced the locomotor activity, rotarod performance, striatal dopamine and its metabolites and TH protein expression.
View Article and Find Full Text PDFExperimental studies have shown that toxicant responsive genes, cytochrome P450s (CYPs) and glutathione S-transferases (GSTs) play a critical role in pesticide-induced toxicity. CYPs play pro-oxidant role and GSTs offer protection in maneb (MB) and paraquat (PQ)-induced brain and lung toxicities. The present study aimed to investigate the effect of repeated exposures of MB and/or PQ on lipid peroxidation (LPO), glutathione content (GSH) and toxicant responsive genes, i.
View Article and Find Full Text PDFFree Radic Res
August 2010
Oxidative stress is implicated in Parkinson's disease (PD). Metallothioneins (MT), cytochrome P450 IIE1 (CYP2E1) and glutathione S-transferases alpha4-4 (GSTA4-4) are involved in oxidative stress-mediated damage. Altered dopamine transporter (DAT) and vesicular monoamine transporter-2 (VMAT-2) are also documented in PD.
View Article and Find Full Text PDFEnvironmental microbes are immensely diverse and have numerous metabolic activities and products that could have industrial applications. However, >99% of environmental microbes cannot be cultured under current laboratory conditions, leaving their potential largely untapped. Metagenomic approaches have been used successfully in recent years to obtain novel microbial products from uncultured microorganisms.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2009
The composition of the methanotrophic community in soil covers on five landfills in Northern and Eastern Germany was investigated by means of diagnostic microarray and terminal restriction fragment length polymorphism (T-RFLP), both targeting the pmoA gene of methanotrophs. Physical and chemical properties of the 15 sampled soil profiles varied greatly, thus providing for very different environmental conditions. The potential methane oxidation activity, assessed using undisturbed soil cores, varied between 0.
View Article and Find Full Text PDFThe effects of repeated application and of combinations of pesticides on their degradation rates in soil and on some soil microbial properties were studied. Repeated application of chlorpyrifos did not modify its degradation rate, whereas repeated applications of fenamiphos and chlorothalonil suppressed their own rates of degradation. When applied in combination, the presence of chlorothalonil reduced the degradation rate of both chlorpyrifos and fenamiphos, and the half-life of chlorothalonil was extended in the presence of chlorpyrifos.
View Article and Find Full Text PDF