Publications by authors named "Bo Dalsgaard"

Global change will create new species interactions and alter or eliminate existing ones, a process known as interaction rewiring. This rewiring can significantly affect how ecosystems function. To better predict the future structure of ecological networks, assessing their ability to adapt to changes is crucial.

View Article and Find Full Text PDF

Habitat fragmentation is causing the collapse of seed dispersal interactions and ecosystem functioning. When management and conservation strategies aim to sustain ecosystem functioning of fragmented forests, species' traits and functional performance are critical in guiding decisions. However, to date, we lack a quantitative understanding of the role of frugivores' body size and dispersal ability in ecosystem sustainability among fragmented forests.

View Article and Find Full Text PDF

Biotic interactions play an important role in species diversification and maintenance and, thus, are regarded as the architecture of biodiversity. Since Darwin and Wallace, biologists have debated whether biotic interactions are stronger towards the tropics and on continents, when compared to temperate regions and islands. Here, based on 354 avian frugivory networks accounting for 22,199 interactions between 1247 bird species and 2126 plant species, we quantified trait matching strength, which reflects interaction strength and specificity, across gradients of latitude and insularity globally.

View Article and Find Full Text PDF

Hurricanes are natural phenomena, but anthropogenic climate change will cause hurricanes to be stronger and more frequent in the future. It has long been known that hurricanes impact plants and animals, but only recently has the impact on biodiversity been mapped globally, showing that species at risk of extinction due to hurricanes are largely restricted to tropical islands. Tropical islands harbor many plants and animals found nowhere else, many of which are currently threatened, and tropical islands have already suffered a disproportionate number of species extinctions due to human activity and introductions of non-native species.

View Article and Find Full Text PDF
Article Synopsis
  • * Urban areas displayed increased generalization in species interactions, demonstrating greater overlap and a link between lower rainfall and more generalized interaction networks.
  • * Urban environments also showed reduced functional trait diversity among hummingbirds and a higher presence of nonnative nectar plants, affecting both species composition and the interactions within these ecological communities.
View Article and Find Full Text PDF

Generalism in resource use is commonly considered a critical driver of population success, species distribution and extinction risk. This idea can be questioned as generalism may be a result rather than the cause of species abundance and range size. We tested these contrasting causal hypotheses focusing on host use in three databases encompassing approximately 44,000 mutualistic (hummingbird-plant), commensalistic (lichen-plant) and parasitic (flea-mammal) interactions in 617 ecological communities across the Americas and Eurasia.

View Article and Find Full Text PDF

An often-overlooked question of the biodiversity crisis is how natural hazards contribute to species extinction risk. To address this issue, we explored how four natural hazards, earthquakes, hurricanes, tsunamis, and volcanoes, overlapped with the distribution ranges of amphibians, birds, mammals, and reptiles that have either narrow distributions or populations with few mature individuals. To assess which species are at risk from these natural hazards, we combined the frequency and magnitude of each natural hazard to estimate their impact.

View Article and Find Full Text PDF

Seed dispersal by frugivorous birds facilitates plant invasions, but it is poorly known how invasive plants integrate into native communities in fragmented landscapes. We surveyed plant-frugivore interactions, including an invasive plant (Phytolacca americana), on 22 artificial land-bridge islands (fragmented forests) in the Thousand Island Lake, China. Focusing on frugivory interactions that may lead to seed dispersal, we built ecological networks of studied islands both at the local island (community) and at landscape (metacommunity) levels.

View Article and Find Full Text PDF

Habitat fragmentation is altering species interactions worldwide. However, the mechanisms underlying the response of network specialization to habitat fragmentation remain unknown, especially for multi-trophic interactions. We here collected a large dataset consisting of 2670 observations of tri-trophic interactions among plants, sap-sucking aphids and honeydew-collecting ants on 18 forested islands in the Thousand Island Lake, China.

View Article and Find Full Text PDF

Building ecological networks is the fundamental basis of depicting how species in communities interact, but sampling complex interaction networks is extremely labour intensive. Recently, indirect ecological information has been applied to build interaction networks. Here we propose to extend the source of indirect ecological information, and applied regional ecological knowledge to build local interaction networks.

View Article and Find Full Text PDF

The immense concentrations of vertebrate species in tropical mountains remain a prominent but unexplained pattern in biogeography. A long-standing hypothesis suggests that montane biodiversity hotspots result from endemic species aggregating within ecologically stable localities. Here, the persistence of ancient lineages coincides with frequent speciation events, making such areas both 'cradles' (where new species arise) and 'museums' (where old species survive).

View Article and Find Full Text PDF

Research on resource partitioning in plant-pollinator mutualistic systems is mainly concentrated at the levels of species and communities, whereas differences between males and females are typically ignored. Nevertheless, pollinators often show large sexual differences in behaviour and morphology, which may lead to sex-specific patterns of resource use with the potential to differentially affect plant reproduction and diversification. We investigated variation in behavioural and morphological traits between sexes of hummingbird species as potential mechanisms underlying sex-specific flower resource use in ecological communities.

View Article and Find Full Text PDF

Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction-coextinction-colonization dynamics affect biological communities under climate change is poorly understood.

View Article and Find Full Text PDF

The ecological co-dependency between plants and hummingbirds is a classic example of a mutualistic interaction: hummingbirds rely on floral nectar to fuel their rapid metabolisms, and more than 7000 plant species rely on hummingbirds for pollination. However, threats to hummingbirds are mounting, with 10% of 366 species considered globally threatened and 60% in decline. Despite the important ecological implications of these population declines, no recent review has examined plant-hummingbird interactions in the wider context of their evolution, ecology, and conservation.

View Article and Find Full Text PDF

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions.

View Article and Find Full Text PDF

Species phenology plays a key role in determining mutualistic interactions, such as those between plants and pollinators. Notably, temporal synchrony shapes the patterns of interactions by influencing the probability of encounters between interacting partners; thus, species phenology greatly contributes to structuring ecological communities. In these communities, specialized species are expected to show a high level of synchrony with their partners; however, the relationship between species phenology and specialization remains largely unexplored.

View Article and Find Full Text PDF

Interactions between species are influenced by different ecological mechanisms, such as morphological matching, phenological overlap and species abundances. How these mechanisms explain interaction frequencies across environmental gradients remains poorly understood. Consequently, we also know little about the mechanisms that drive the geographical patterns in network structure, such as complementary specialization and modularity.

View Article and Find Full Text PDF

Mountains contribute disproportionately to the terrestrial biodiversity of Earth, especially in the tropics, where they host hotspots of extraordinary and puzzling richness. With about 25% of all land area, mountain regions are home to more than 85% of the world's species of amphibians, birds, and mammals, many entirely restricted to mountains. Biodiversity varies markedly among these regions.

View Article and Find Full Text PDF

Recent studies on ecological networks have quantified the contribution of ecological, historical, and evolutionary factors on the structure of local communities of interacting species. However, the influence of species' biogeographical traits, such as migratory habits or phylogeographical history, on ecological networks is poorly understood. Meta-networks, i.

View Article and Find Full Text PDF

Species traits are thought to predict feeding specialization and the vulnerability of a species to extinctions of interaction partners, but the context in which a species evolved and currently inhabits may also matter. Notably, the predictive power of traits may require that traits evolved to fit interaction partners. Furthermore, local abiotic and biotic conditions may be important.

View Article and Find Full Text PDF

Woody plants host diverse communities of associated organisms, including wood-inhabiting fungi. In this group, host effects on species richness and interaction network structure are not well understood, especially not at large geographical scales. We investigated ecological, historical and evolutionary determinants of fungal species richness and network modularity, that is, subcommunity structure, across woody hosts in Denmark, using a citizen science data set comprising > 80 000 records of > 1000 fungal species on 91 genera of woody plants.

View Article and Find Full Text PDF
Article Synopsis
  • Ecological communities with stable climates are expected to have more specialized interspecific relationships and a higher prevalence of smaller ranged species (SRS).
  • An analysis of 46 hummingbird-plant networks across the Americas indicated a positive correlation between the proportion of SRS and community-level specialization in hummingbirds.
  • The findings suggest that higher proportions of SRS may make communities more vulnerable to disturbances due to their limited geographical ranges and high specialization.
View Article and Find Full Text PDF

Virtually all empirical ecological interaction networks to some extent suffer from undersampling. However, how limitations imposed by sampling incompleteness affect our understanding of ecological networks is still poorly explored, which may hinder further advances in the field. Here, we use a plant-hummingbird network with unprecedented sampling effort (2716 h of focal observations) from the Atlantic Rainforest in Brazil, to investigate how sampling effort affects the description of network structure (i.

View Article and Find Full Text PDF