The addition of nutrients to soil can induce changes through "bottom-up" effects in soil-plant-animal interactions, impacting higher levels in food chains. Changes in foliar nutrient content may influence diets of herbivorous insects, subsequently altering their feeding rates and abundance. Spiders established in foliage rely on these insects for sustenance; therefore, fluctuations in the abundance of herbivorous insect communities ultimately determine the population dynamics of their spider predators.
View Article and Find Full Text PDFEconomic sectors that drive nature decline are heavily subsidized and produce large environmental externalities. Calls are increasing to reform or eliminate subsidies and internalize the environmental costs of these sectors. We compile data on subsidies and externalities across six sectors driving biodiversity loss-agriculture, fossil fuels, forestry, infrastructure, fisheries and aquaculture, and mining.
View Article and Find Full Text PDFIntensive agriculture with high reliance on pesticides and fertilizers constitutes a major strategy for 'feeding the world'. However, such conventional intensification is linked to diminishing returns and can result in 'intensification traps'-production declines triggered by the negative feedback of biodiversity loss at high input levels. Here we developed a novel framework that accounts for biodiversity feedback on crop yields to evaluate the risk and magnitude of intensification traps.
View Article and Find Full Text PDFGlobally, human activities impose threats to nature and the provision of ecosystem services, such as pollination. In this context, ecological restoration provides opportunities to create managed landscapes that maximize biodiversity conservation and sustainable agriculture, e.g.
View Article and Find Full Text PDFPollination is a vitally important function in nature and becomes an ecosystem service because it influences the food and nutritional security for people. However, the contribution of different functional traits of insects for pollen transport of plants is still poorly known. We explore the relationship between pollinator insect functional traits and the transport of pollen of sweet granadilla (Passiflora ligularis Juss) in eight crops.
View Article and Find Full Text PDFMany publications lack sufficient background information (e.g. location) to be interpreted, replicated, or reused for synthesis.
View Article and Find Full Text PDFEnviron Health Perspect
December 2022
Background: Animal pollination supports agricultural production for many healthy foods, such as fruits, vegetables, nuts, and legumes, that provide key nutrients and protect against noncommunicable disease. Today, most crops receive suboptimal pollination because of limited abundance and diversity of pollinating insects. Animal pollinators are currently suffering owing to a host of direct and indirect anthropogenic pressures: land-use change, intensive farming techniques, harmful pesticides, nutritional stress, and climate change, among others.
View Article and Find Full Text PDFTrends Ecol Evol
February 2023
Pollinators are critical for food security; however, their contribution to the pollination of locally important crops is still unclear, especially for non-bee pollinators. We reviewed the diversity, conservation status, and role of bee and non-bee pollinators in 83 different crops described either as important for the global food market or of local importance. Bees are the most commonly recorded crop floral visitors.
View Article and Find Full Text PDFExtreme events, such as those caused by climate change, economic or geopolitical shocks, and pest or disease epidemics, threaten global food security. The complexity of causation, as well as the myriad ways that an event, or a sequence of events, creates cascading and systemic impacts, poses significant challenges to food systems research and policy alike. To identify priority food security risks and research opportunities, we asked experts from a range of fields and geographies to describe key threats to global food security over the next two decades and to suggest key research questions and gaps on this topic.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2022
Despite recent advances in understanding the role of biodiversity in ecosystem-service provision, the links between the health of ecosystem-service providers and human health remain more uncertain. During the past decade, an increasing number of studies have argued for the positive impacts of healthy pollinator communities (defined as functionally and genetically diverse species assemblages that are sustained over time) on human health. Here, we begin with a systematic review of these impacts, finding only two studies that concomitantly quantified aspects of pollinator health and human health.
View Article and Find Full Text PDFSeventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions.
View Article and Find Full Text PDFInvasive species can reach high abundances and dominate native environments. One of the most impressive examples of ecological invasions is the spread of the African subspecies of the honey bee throughout the Americas, starting from its introduction in a single locality in Brazil. The invasive honey bee is expected to more negatively impact bee community abundance and diversity than native dominant species, but this has not been tested previously.
View Article and Find Full Text PDFPollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance.
View Article and Find Full Text PDFCrop pollination is one of Nature's Contributions to People (NCP) that reconciles biodiversity conservation and agricultural production. NCP benefits vary across space, including among distinct political-administrative levels within nations. Moreover, initiatives to restore ecosystems may enhance NCP provision, such as crop pollination delivered by native pollinators.
View Article and Find Full Text PDFNat Ecol Evol
October 2021
Pollinator decline has attracted global attention and substantial efforts are underway to respond through national pollinator strategies and action plans. These policy responses require clarity on what is driving pollinator decline and what risks it generates for society in different parts of the world. Using a formal expert elicitation process, we evaluated the relative regional and global importance of eight drivers of pollinator decline and ten consequent risks to human well-being.
View Article and Find Full Text PDFWorldwide, there is increasing evidence that shows a decline in pollinators, limiting crop pollination and production. However, it is unclear to what extent Chinese agriculture could be impacted by pollinator deficits. Data for 84 major crops in China between 1961 and 2018 were analyzed for the temporal trends in crop area and production, agricultural economic contribution of pollination, crop yield deficits, and honey bee pollination demand.
View Article and Find Full Text PDFSoybeans cover 129 million hectares globally. Soybean productivity can increase with pollinator management, but soybean cultivation practices commonly ignore biotic pollination. If pollinator habitats are created within soybean landscapes and policies to limit agricultural expansion are implemented, millions of hectares could be restored for biodiversity without loss of soybean production.
View Article and Find Full Text PDFWhile an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood.
View Article and Find Full Text PDF