Publications by authors named "Biyu Jin"

The restoration of cardiac function post-myocardial infarction (MI) remains a significant clinical challenge. Emerging evidence indicates that Goji berries ("Gouqi" in Chinese) and their extracts exhibit substantial cardioprotective properties. Here, we introduce fibrin gel-loaded Gouqi-derived nanovesicles (GqDNVs-gel) as a delivery system targeted at the infarcted myocardium.

View Article and Find Full Text PDF

Sodium-sulfur batteries promise high-energy-density and sustainable electrochemical energy storage but suffer from uncontrolled polysulfide dissolution and high sodium reactivity. These challenges fundamentally originate from poor electrolyte-electrode compatibility. Current electrolyte research inadequately addresses the trade-off between minimal polysulfide solvation and stabilizing sodium interfaces.

View Article and Find Full Text PDF

P2-type NaNiMnO cathodes have attracted attention due to their excellent stability and low cost, making them promising for sodium-ion batteries. However, their practical application is limited by a low capacity at lower voltages and severe phase transitions at higher voltage. To address these challenges, we report a material NaNiMnO-OVs (NNMO-OVs) with significantly slowed phase transitions at high voltage by introducing oxygen vacancies OVs into the P2/P3 mixed phase cathode NaNiMnO (NNMO).

View Article and Find Full Text PDF

The practical application of silicon (Si)-based anodes faces challenges due to severe structural and interphasial degradations. These challenges are exacerbated in lithium-ion batteries (LIBs) employing Si-based anodes with high-nickel layered oxide cathodes, as significant transition-metal crossover catalyzes serious parasitic side reactions, leading to faster cell failure. While enhancing the mechanical properties of polymer binders has been acknowledged as an effective means of improving solid-electrolyte interphase (SEI) stability on Si-based anodes, an in-depth understanding of how the binder chemistry influences the SEI is lacking.

View Article and Find Full Text PDF

Objectives: Physical activity (PA) and telomeres both contribute to healthy aging and longevity. To investigate the optimal dosage of various PA for longevity and the role of telomere length in PA and mortality.

Design: Prospective cohort study.

View Article and Find Full Text PDF

Composite polymer electrolytes (CPEs) with high ionic conductivity and favorable electrolyte/electrode interfacial compatibility are promising alternatives to liquid electrolytes. However, severe parasitic reactions in the Li/electrolyte interface and the air-unstable inorganic fillers have hindered their industrial applications. Herein, surface-edge opposite charged Laponite (LAP) multilayer particles with high air stability were grafted with imidazole ionic liquid (IL-TFSI) to enhance the thermal, mechanical, and electrochemical performances of polyethylene oxide (PEO)-based CPEs.

View Article and Find Full Text PDF

Lithium metal batteries have emerged as a promising candidate for next-generation power systems. However, the high reactivity of lithium metal with liquid electrolytes has resulted in decreased battery safety and stability, which poses a significant challenge. Herein, we present a modified laponite-supported gel polymer electrolyte (LAP@PDOL GPE) that was fabricated using in situ polymerization initiated by a redox-initiating system at ambient temperature.

View Article and Find Full Text PDF

The practical viability of high-nickel layered oxide cathodes is compromised by the interphasial and structural degradations. Herein, we demonstrate that by applying an in situ interweaved binder, the cycling stability of high-nickel cathodes can be significantly improved. Specifically, the results show that the resilient binder network immobilizes the transition-metal ions, suppresses electrolyte oxidative decomposition, and mitigates cathode particles pulverization, thus resulting in suppressed cathode-to-anode chemical crossover and ameliorated chemistry and architecture of electrode-electrolyte interphases.

View Article and Find Full Text PDF

Solid-state polymer electrolytes (SPEs) are expected to guarantee safe and durable operations of lithium metal batteries (LMBs). Herein, inspired by the salutary poly(vinyl ethylene carbonate) (PVEC) component in the solid electrolyte interphase, cross-linking vinyl ethylene carbonate and ionic liquid copolymers were synthesized by in-situ polymerization to serve as polymer electrolyte for LMBs. On one hand, due to rich ester bonds of PVEC, Li could transfer by coupling/decoupling with oxygen atoms.

View Article and Find Full Text PDF
Article Synopsis
  • Silicon is a promising material for next-gen lithium-ion batteries due to its high capacity but suffers from structural damage during charging and discharging.
  • To address this issue, a novel fluorinated copolymer was developed, which features a dual cross-linked network that helps stabilize silicon particles during their volume changes.
  • This innovative binder led to impressive electrochemical performance, with certain silicon/graphite electrodes showing minimal capacity loss over hundreds of cycles, enhancing the potential for high-performance silicon-based batteries.
View Article and Find Full Text PDF

Various organogel materials with either a liquid or solid surface layer have recently been designed and prepared. In this work, amphiphilic organogels (AmOG) are innovatively developed from copolymer P(PDMS-r-PEG-r-GMA) and 2,2'-diaminodiphenyldisulfide via epoxy group addition reaction and then infiltrated with amphiphilic lubricants instead of traditional hydrophilic or hydrophobic lubricants. Because of synergistic effects of hydrophilic and hydrophobic segments of amphiphilic lubricants, the AmOG surfaces showed high stability and excellent anti-icing performance.

View Article and Find Full Text PDF

In this work, a novel substrate building block, magnetic FeO nanoparticles armed with dopamine molecules were developed via mussel-inspired metal-coordination bonds. Combined with glycidyl methacrylate, polydimethylsiloxane propyl ether methacrylate, and diethylenetriamine, the original silicone oil swelling slippery liquid-infused porous surfaces (SLIPS) were first prepared by reversible coordinate bonds and strong covalent bonds cross-linking process. The matrix mechanical characteristics and surface physicochemical properties were systematically investigated.

View Article and Find Full Text PDF

The superhydrophobic antibacterial fabrics with intelligent switchable wettability were fabricated by the cross-link reaction among pH-responsive antibacterial copolymer tethered hydroxyl groups, methylol-contained poly(ureaformaldehyde) nanoparticles (PUF NPs), and hexamethylene diisocyanate. It was found that the surface concentration of N were heavily influenced by acid solutions, resulting in the rapid wettability conversion from superhydrophobicity/superoleophilicity to superhydrophilicity/underwater superoleophobicity in a remarkably short time. The above responsiveness feature of coated cotton fabric contributes a prominent selective oil/water separation property, and the separation efficiency invariably remained at greater than 95% even after 20 reuse cycles, which exhibited brilliant durability.

View Article and Find Full Text PDF

USA and China are two leading countries engaged in nanotechnology research and development. They compete with each other for fruits in this innovative area in a parallel and compatible manner. Understanding the status and developmental prospects of nanotechnology in USA and China is important for policy-makers to decide nanotechnology priorities and funding, and to explore new ways for global cooperation on key issues.

View Article and Find Full Text PDF
Article Synopsis
  • Ursolic acid (UA) has limited anticancer effectiveness due to poor solubility and low bioavailability, prompting the development of a new delivery system using PAMAM dendrimers conjugated with UA and folic acid (FA).
  • The newly synthesized prodrugs demonstrated enhanced cellular uptake in folate receptor (FR) positive cells (like Hela) through mechanisms such as endocytosis, which was not observed in FR-negative cells (like HepG2).
  • Testing showed that FA-modified dendrimeric prodrugs had significantly higher toxicity in Hela cells compared to non-FA versions, indicating a potential for improved targeted delivery of UA to enhance anti-tumor effects.
View Article and Find Full Text PDF