Doping impurity atoms into metal oxide semiconductors plays a crucial role in modulating both their electronic and chemical properties at active sites. Tin oxide (SnO) quantum wires (QWs), with their large surface area and numerous exposed active sites, have shown significant potential as sensing materials for gas sensors. However, challenges such as unsatisfactory selectivity and detection limits (LODs) still hinder their performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
The detection of hydrogen sulfide (HS) in humid environments remains a significant challenge, particularly in wearable gas sensors where humidity, mechanical flexibility, and power consumption are critical constraints. In this study, we introduce a stretchable, humidity-resistant HS sensor based on microcrumpled SnO quantum-wire films, designed for efficient gas detection at room temperature with low-power consumption. The sensor's architecture enhances gas adsorption by increasing the active surface area while minimizing water accumulation through surface energy modulation.
View Article and Find Full Text PDFThe demand for highly sensitive and selective gas sensors for the detection of target gases in complex environments is rapidly increasing. In this study, we present a novel approach utilizing atomic layer deposition (ALD) technology to fabricate gas sensors based on metal-nanocluster functionalized 3D SnO nanotube arrays. Pd/Au-nanocluster-sensitized SnO sensors exhibit high sensitivity to formaldehyde, toluene, and acetone at room temperature, with detection limits of 1.
View Article and Find Full Text PDFThe large particle size asphalt mixture with nominal maximum aggregate size 53 mm(LSAM-50) has good technical and economic performance and will become an effective technical way to build a full-thick long-life asphalt pavement with Chinese characteristics. In order to reveal the mechanical properties and influencing factors of LSAM-50 in depth, a numerical test method for the mechanical properties of the large particle size LSAM-50 asphalt mixture was developed, and a reasonable specimen size for LSAM-50 performance test was proposed by combining the numerical test and the indoor test. The results show that: LSAM-50 numerical test conditions are the calculation time step 10-3 s/step, the loading rate is 2 mm/min (uniaxial compression numerical test) and 50 mm/min (splitting numerical test) when LSAM-50 numerical experiment calculation rate and numerical experiment accuracy are better; after the size of the specimen reaches 200×160mm, the influence of the size effect is eliminated.
View Article and Find Full Text PDFSensors (Basel)
November 2024
This paper presents a comprehensive optimization of an outer frame anchor disk resonator gyroscope (DRG) with enhanced resistance to vibration and shock, achieved by increasing the resonant frequency of the tub and translation modes. Furthermore, the wineglass mode retains a high quality factor, enhancing sensitivity and reducing the angle random walk (ARW). The performance of the proposed DRG is analyzed using dynamic equations, and its structural parameters are optimized through finite element analysis (FEA).
View Article and Find Full Text PDFDetecting H at low concentrations is important due to it being a major safety concern in practical applications. However, semiconductor chemiresistive gas sensors always suffer from high operating temperatures and power consumption, as well as a limited concentration detection range, which restricts their widespread use. Herein, we developed a 3D nanostructured gas sensor employing a Pd-nanocluster-decorated SnO nanotube array as the sensing layer.
View Article and Find Full Text PDF