Publications by authors named "Benjamin D Hamlington"

We synthesize sea-level science developments, priorities and practitioner needs at the end of the 10-year World Climate Research Program Grand Challenge 'Regional Sea-Level Change and Coastal Impacts'. Sea-level science and associated climate services have progressed but are unevenly distributed. There remains deep uncertainty concerning high-end and long-term sea-level projections due to indeterminate emissions, the ice sheet response and other climate tipping points.

View Article and Find Full Text PDF

Coastal vertical land motion (VLM), including uplift and subsidence, can greatly alter relative sea level projections and flood mitigations plans. Yet, current projection frameworks, such as the IPCC Sixth Assessment Report, often underestimate VLM by relying on regional linear estimates. Using high-resolution (90-meter) satellite data from 2015 to 2023, we provide local VLM estimates for California and assess their contribution to sea level rise both now and in future.

View Article and Find Full Text PDF

Saltwater intrusion is a critical concern for coastal communities due to its impacts on fresh ecosystems and civil infrastructure. Declining recharge and rising sea level are the two dominant drivers of saltwater intrusion along the land-ocean continuum, but there are currently no global estimates of future saltwater intrusion that synthesize these two spatially variable processes. Here, for the first time, we provide a novel assessment of global saltwater intrusion risk by integrating future recharge and sea level rise while considering the unique geology and topography of coastal regions.

View Article and Find Full Text PDF

Regional relative sea level rise is exacerbating flooding hazards in the coastal zone. In addition to changes in the ocean, vertical land motion (VLM) is a driver of spatial variation in sea level change that can either diminish or enhance flood risk. Here, we apply state-of-the-art interferometric synthetic aperture radar and global navigation satellite system time series analysis to estimate velocities and corresponding uncertainties at 30-m resolution in the New York City metropolitan area, revealing VLM with unprecedented detail.

View Article and Find Full Text PDF

We apply two statistical techniques to satellite measurements to identify a relationship between terrestrial water storage (TWS) and El Niño-Southern Oscillation (ENSO). First, we modified and used the least-squares regression of a previous study using longer records. Second, we applied a cyclostationary empirical orthogonal function analysis (CSEOF).

View Article and Find Full Text PDF

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time.

View Article and Find Full Text PDF

The two dominant drivers of the global mean sea level (GMSL) variability at interannual timescales are steric changes due to changes in ocean heat content and barystatic changes due to the exchange of water mass between land and ocean. With Gravity Recovery and Climate Experiment (GRACE) satellites and Argo profiling floats, it has been possible to measure the relative steric and barystatic contributions to GMSL since 2004. While efforts to "close the GMSL budget" with satellite altimetry and other observing systems have been largely successful with regards to trends, the short time period covered by these records prohibits a full understanding of the drivers of interannual to decadal variability in GMSL.

View Article and Find Full Text PDF

Sea ice reduction is accelerating in the Barents and Kara Seas. Several mechanisms are proposed to explain the accelerated loss of Arctic sea ice, which remains to be controversial. In the present study, detailed physical mechanism of sea ice reduction in winter (December-February) is identified from the daily ERA interim reanalysis data.

View Article and Find Full Text PDF

In this paper, we focus on the isotropic-to-nematic phase transition in a liquid-crystal droplet. We present the results of an experiment to measure the growth of the nematic phase within an isotropic phase liquid-crystal droplet. Experimentally, we observe two primary phase transition regimes.

View Article and Find Full Text PDF