Publications by authors named "Jan T M Lenaerts"

Article Synopsis
  • Anthropogenic climate change is expected to cause significant mass loss from the Antarctic and Greenland Ice Sheets, affecting global climate systems, especially in polar areas.
  • The study uses an Earth system model to evaluate how freshwater from these ice sheets influences ocean heat and carbon storage under a high-emission scenario over the 21st century.
  • Results show that simultaneous freshwater discharge from both ice sheets leads to distinct changes in ocean heat and carbon storage, with the Greenland Ice Sheet having a dominant effect on global ocean heat storage from 2080 to 2100.
View Article and Find Full Text PDF

Firn (compressed snow) covers approximately 90[Formula: see text] of the Greenland ice sheet (GrIS) and currently retains about half of rain and meltwater through refreezing, reducing runoff and subsequent mass loss. The loss of firn could mark a tipping point for sustained GrIS mass loss, since decades to centuries of cold summers would be required to rebuild the firn buffer. Here we estimate the warming required for GrIS firn to reach peak refreezing, using 51 climate simulations statistically downscaled to 1 km resolution, that project the long-term firn layer evolution under multiple emission scenarios (1850-2300).

View Article and Find Full Text PDF

Atmospheric rivers (ARs) are efficient mechanisms for transporting atmospheric moisture from low latitudes to the Antarctic Ice Sheet (AIS). While AR events occur infrequently, they can lead to extreme precipitation and surface melt events on the AIS. Here we estimate the contribution of ARs to total Antarctic precipitation, by combining precipitation from atmospheric reanalyses and a polar-specific AR detection algorithm.

View Article and Find Full Text PDF
Article Synopsis
  • The East Antarctic Ice Sheet holds about 52 meters of sea-level equivalent glacier ice and is generally considered less vulnerable to climate change than its counterparts in West Antarctica and Greenland.
  • Recent observations indicate some regions of the East Antarctic Ice Sheet are losing mass, compelling a reassessment of its response to climate change.
  • While projections suggest that the ice sheet may maintain a balance with increased accumulation in the 21st century, high-emission scenarios could lead to significant ice loss and sea-level rise after 2100, with efforts to limit warming to below 2 degrees Celsius potentially mitigating this risk.
View Article and Find Full Text PDF

Unlabelled: The Arctic is the region on Earth that is warming the fastest. At the same time, Arctic sea ice is reducing while the Greenland ice sheet (GrIS) is losing mass at an accelerated pace. Here, we study the seasonal impact of reduced Arctic sea ice on GrIS surface mass balance (SMB), using the Community Earth System Model version 2.

View Article and Find Full Text PDF

Earth system/ice-sheet coupling is an area of recent, major Earth System Model (ESM) development. This work occurs at the intersection of glaciology and climate science and is motivated by a need for robust projections of sea-level rise. The Community Ice Sheet Model version 2 (CISM2) is the newest component model of the Community Earth System Model version 2 (CESM2).

View Article and Find Full Text PDF

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time.

View Article and Find Full Text PDF

Surface mass balance (SMB) provides mass input to the surface of the Antarctic and Greenland Ice Sheets and therefore comprises an important control on ice sheet mass balance and resulting contribution to global sea level change. As ice sheet SMB varies highly across multiple scales of space (meters to hundreds of kilometers) and time (hourly to decadal), it is notoriously challenging to observe and represent in models. In addition, SMB consists of multiple components, all of which depend on complex interactions between the atmosphere and the snow/ice surface, large-scale atmospheric circulation and ocean conditions, and ice sheet topography.

View Article and Find Full Text PDF

The high Arctic is the fastest warming region on Earth, evidenced by extreme near-surface temperature increase in non-summer seasons, recent rapid sea ice decline and permafrost melting since the early 1990's. Understanding the impact of climate change on the sensitive Arctic ecosystem to climate change has so far been hampered by the lack of time-constrained, high-resolution records and by implicit climate data analyses. Here, we show evidence of sharp growth in freshwater green algae as well as distinct diatom assemblage changes since ~1995, retrieved from a high-Arctic (80 °N) lake sediment record on Barentsøya (Svalbard).

View Article and Find Full Text PDF

We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively.

View Article and Find Full Text PDF