Rationale: Chronic stress is a major precipitating factor for mood disorders, which are diagnosed twice as frequently in women as in men. However, most preclinical models of chronic social defeat stress have limited use in females due to reduced aggression toward female intruders. The chronic non-discriminatory social defeat stress (CNSDS) model addresses these limitations by enabling the study of stress susceptibility across sexes in a variety of behavioral tasks including avoidance and simple reward behaviors.
View Article and Find Full Text PDFRationale: Mood disorders are often precipitated by chronic stress and can result in an inability to adapt to the environment and increased vulnerability to challenging experiences. While diagnoses of mood disorders are diagnosed twice as frequently in women than in men, most preclinical chronic social defeat stress mouse models exclude females due to decreased aggression toward female intruders.
Objectives: We previously reported that the chronic non-discriminatory social defeat stress (CNSDS) paradigm is effective in both sexes, allowing for comparisons between male and female mice.
Corticotropin-releasing factor (CRF) in the anterior bed nucleus of the stria terminalis (aBNST) is associated with chronic stress and avoidance behavior. However, CRF + BNST neurons project to reward- and motivation-related brain regions, suggesting a potential role in motivated behavior. We used chemogenetics to selectively activate CRF+ aBNST neurons in male and female CRF-ires-Cre mice during an effort-related choice task and a concurrent choice task.
View Article and Find Full Text PDFThe bed nucleus of the stria terminalis (BNST) is a medial basal forebrain structure that modulates the hypothalamo-pituitary-adrenal (HPA) axis. The heterogeneous subnuclei of the BNST integrate inputs from mood and reward-related areas and send direct inhibitory projections to the hypothalamus. The connections between the BNST and hypothalamus are conserved across species, promote activation of the HPA axis, and can increase avoidance of aversive environments, which is historically associated with anxiety behaviors.
View Article and Find Full Text PDFReward and motivation deficits are prominent symptoms in many mood disorders, including depression. Similar reward and effort-related choice behavioral tasks can be used to study aspects of motivation in both rodents and humans. Chronic stress can precipitate mood disorders in humans and maladaptive reward and motivation behaviors in male rodents.
View Article and Find Full Text PDFTransl Psychiatry
January 2021
Antidepressants that target monoaminergic systems, such as selective serotonin reuptake inhibitors (SSRIs), are widely used to treat neuropsychiatric disorders including major depressive disorder, several anxiety disorders, and obsessive-compulsive disorder. However, these treatments are not ideal because only a subset of patients achieve remission. The reasons why some individuals remit to antidepressant treatments while others do not are unknown.
View Article and Find Full Text PDFPsychopharmacology (Berl)
July 2020
Rationale: Effort-related choice tasks are used to study aspects of motivation in both rodents and humans (Der-Avakian and Pizzagalli Biol Psychiatry 83(11):932-939, 2018). Various dopaminergic manipulations and antidepressant treatments can shift responding to these tasks (Randall et al. Int J Neuropsychopharmacol 18(2), 2014; Yohn et al.
View Article and Find Full Text PDFRationale: Some mood disorders, such as major depressive disorder, are more prevalent in women than in men. However, historically preclinical studies in rodents have a lower inclusion rate of females than males, possibly due to the fact that behavior can be affected by the estrous cycle. Several studies have demonstrated that chronic antidepressant treatment can decrease anxiety-associated behaviors and increase adult hippocampal neurogenesis in male rodents.
View Article and Find Full Text PDFNeuropsychopharmacology
December 2019
Stress-related mood disorders are more prevalent in females than males, yet preclinical chronic stress paradigms were developed in male rodents and are less effective in female rodents. Here we characterize a novel chronic non-discriminatory social defeat stress (CNSDS) paradigm that results in comparable stress effects in both sexes. Male and female C57BL/6J mice were simultaneously introduced into the home cage of resident CD-1 aggressors for 10 daily 5-min sessions.
View Article and Find Full Text PDFDepression is a polygenic and highly complex psychiatric disorder that remains a major burden on society. Antidepressants, such as selective serotonin reuptake inhibitors (SSRIs), are some of the most commonly prescribed drugs worldwide. In this review, we will discuss the evidence that links serotonin and serotonin receptors to the etiology of depression and the mechanisms underlying response to antidepressant treatment.
View Article and Find Full Text PDFNeuropsychopharmacology
September 2017
Depression is a debilitating chronic illness that affects around 350 million people worldwide. Current treatments, such as selective serotonin reuptake inhibitors, are not ideal because only a fraction of patients achieve remission. Tianeptine is an effective antidepressant with a previously unknown mechanism of action.
View Article and Find Full Text PDFSelective serotonin reuptake inhibitors are the mostly widely used treatment for major depressive disorders and also are prescribed for several anxiety disorders. However, similar to most antidepressants, selective serotonin reuptake inhibitors suffer from two major problems: They only show beneficial effects after 2 to 4 weeks and only about 33% of patients show remission to first-line treatment. Thus, there is a considerable need for development of more effective antidepressants.
View Article and Find Full Text PDFN-type voltage-gated calcium channels localize to presynaptic nerve terminals and mediate key events including synaptogenesis and neurotransmission. While several kinases have been implicated in the modulation of calcium channels, their impact on presynaptic functions remains unclear. Here we report that the N-type calcium channel is a substrate for cyclin-dependent kinase 5 (Cdk5).
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2012
Using in situ hybridization, we describe, for the first time, the profiles of expression of serotonin receptors (Htr/5-HTR) along the dorsal-ventral axis of mouse hippocampus. cRNA probes for most Htrs, excluding Htr6, were used. All hippocampal subregions and the entorhinal cortex cells providing input into the hippocampus were examined.
View Article and Find Full Text PDFDepression is a polygenic and highly complex psychiatric disorder that is currently a major burden on society. Depression is highly heterogeneous in presentation and frequently exhibits high comorbidity with other psychiatric and somatic disorders. Commonly used treatments, such as selective serotonin reuptake inhibitors (SSRIs), are not ideal since only a subset of patients achieve remission.
View Article and Find Full Text PDFAdult neurogenesis in the dentate gyrus of the hippocampus has gained considerable attention as a cellular substrate for both the pathophysiology and treatment of depression. Overall, the studies of adult hippocampal neurogenesis are still in their infancy because most of them explore only one stage of this process. Importantly, given the built-in homeostatic mechanisms that act at each stage during the progression from stem cells to mature neurons (proliferation, differentiation, maturation, survival), it is very difficult to extrapolate the efficiency of a drug on adult neurogenesis from analysis of one stage alone.
View Article and Find Full Text PDFUnderstanding the physiopathology of affective disorders and their treatment relies on the availability of experimental models that accurately mimic aspects of the disease. Here we describe a mouse model of an anxiety/depressive-like state induced by chronic corticosterone treatment. Furthermore, chronic antidepressant treatment reversed the behavioral dysfunctions and the inhibition of hippocampal neurogenesis induced by corticosterone treatment.
View Article and Find Full Text PDFNdel1, the mammalian homologue of the Aspergillus nidulans NudE, is emergently viewed as an integrator of the cytoskeleton. By regulating the dynamics of microtubules and assembly of neuronal intermediate filaments (IFs), Ndel1 promotes neurite outgrowth, neuronal migration, and cell integrity (1-6). To further understand the roles of Ndel1 in cytoskeletal dynamics, we performed a tandem affinity purification of Ndel1-interacting proteins.
View Article and Find Full Text PDFSynaptogenesis is a highly regulated process that underlies formation of neural circuitry. Considerable work has demonstrated the capability of some adhesion molecules, such as SynCAM and Neurexins/Neuroligins, to induce synapse formation in vitro. Furthermore, Cdk5 gain of function results in an increased number of synapses in vivo.
View Article and Find Full Text PDFMigration of neurons to their proper position underlies mammalian brain development. To remain on the proper path, a migrating neuron needs to detect various external signals and respond by efficiently remodeling its cytoskeleton. Cyclin-dependent kinase 5 (Cdk5), a member of the cyclin-dependent kinase family, regulates neuronal migration by phosphorylating a number of intracellular substrates.
View Article and Find Full Text PDFThe serine/threonine kinase Cdk5 plays an essential role in neuronal positioning during corticogenesis, but the underlying mechanisms are unknown. In nonneuronal cells, the tyrosine kinase FAK is a major regulator of cell motility through focal adhesions. It is unclear whether FAK plays a role in brain development.
View Article and Find Full Text PDF