Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, but they are generally confined to laboratory settings. Consequently, there is a growing demand for point-of-care testing (POCT) solutions that are rapid, sensitive, portable, and cost-effective.
View Article and Find Full Text PDFThe cost of cancer care globally is unsustainable and strategies to reduce the mounting burden of cancer are urgently needed. One approach is the use of preventive therapies to reduce cancer risk; dietary-derived compounds with good safety profiles represent a promising source of potential candidates but translating encouraging preclinical data to successful trials presents significant challenges. Development of curcumin, from the spice turmeric, as a preventive therapy for colorectal cancer (CRC) is hindered by poor understanding of its mechanism of action.
View Article and Find Full Text PDFMolten salts have been recently used as catalysts for methane pyrolysis to generate hydrogen and carbon. It was found that molten alkali chlorides, which are poor catalysts, become rather active upon the addition of a small amount of FeCl3. Calculations have shown that this takes place through an unusual mechanism.
View Article and Find Full Text PDFHerein, mucoadhesive and biocompatible network hydrogels were developed by grafting zwitterionic polymer poly(2-[(methacryoyloxy)ethyl]dimethyl (3-sulfopropyl) ammonium hydroxide (poly(MEDSAH)) onto bacterial-derived polysaccharide xanthan gum (XG) free radical graft polymerization, followed by crosslinking with ,'-methylene bisacrylamide (NNMBA). The developed polymeric hydrogels were characterized using XRD, FTIR, C-NMR, TGA-DSC, FESEM, EDX and AFM analyses. FESEM and AFM analyses of these hydrogels demonstrated morphological heterogeneous features with surface roughness.
View Article and Find Full Text PDFRecently, functional materials derived from carbohydrate polymers have gained significant attention for their clinical uses due to their inherent bioactivity and biocompatibility. Therefore, the primary focus of the present research was to design bioactive moringa gum (MOGUM)-based hydrogels through covalent and supra-molecular interactions for use in biomedical applications. The copolymeric hydrogels were prepared by crosslinking of zwitterionic polymers of 2-(methacryloyloxy)ethyl] dimethyl-(3-sulfoproyl) ammonium hydroxide (MEDSAH) and carbopol (CP) onto gum for their applications in hydrogel wound dressings (HWDR) and drug delivery (DD).
View Article and Find Full Text PDFThe mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe lung inflammation and mortality remain unclear. While the role of alveolar macrophages in COVID-19 is known, data on pulmonary intravascular macrophages (PIMs) is lacking. PIMs are key inflammatory cells present in species like cattle and pigs.
View Article and Find Full Text PDFImportance: Perineal wound complications are common following abdominoperineal resection for rectal cancer and might have substantial and long-lasting implications for patients' recovery.
Objective: To evaluate the superiority of gluteal turnover flap closure compared to primary closure in patients with rectal cancer undergoing abdominoperineal resection.
Design, Setting, And Participants: The BIOPEX-2 study was an investigator-initiated, parallel-group, multicenter randomized clinical trial conducted at 19 centers in the Netherlands and the UK between June 2019 and November 2023, including 12 months of follow-up.
Recently, significant progress has been made in the development of natural polysaccharide-derived functional copolymers for advanced biomedical uses. Herein, the main objective of the present research work was to explore the potential of gum acacia (GA) and tragacanth gum (TG) for developing network hydrogels to use in drug delivery (DD) applications. The copolymers were prepared by grafting of 3-sulfopropylacrlate (SPA) onto gum (GA-TG).
View Article and Find Full Text PDFIntroduction: The rapid progress in polymer science has designed innovative materials for biomedical applications. In the case of drug design, for each new therapeutic agent, a drug delivery system (DDS) is required to improve its pharmacokinetic and pharmacodynamic parameters. Therefore, significant research has been carried out to develop drug delivery (DD) carriers for these new therapeutic agents.
View Article and Find Full Text PDFIn the present study, the impact of ultrasonication treatment (US) at varying time duration (10 and 20 min) on pearl millet protein (PMP) was evaluated. The native and ultrasonicated PMP were evaluated for techno-functional properties, zeta potential, particle size, SEM, FTIR, thermal properties and dynamic rheology. The significant (p < 0.
View Article and Find Full Text PDFIn order to meet global food requirement, innovation in agricultural techniques and pesticide delivery system will be required for sustainable food supply with minimal harmful impact on environment. This article discusses the synthesis of hydrogels for use in controlled release formulations (CRFs) to increase agricultural output while reducing ecotoxicity and health risks. These hydrogels were designed by graft-copolymerization reaction of polyacrylamide and polyvinyl sulfonic acid onto agar-alginate marine polysaccharides.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
The versatile properties of carbohydrate polymers make them a relevant, promising precursor to design innovative materials for use in biomedical applications. Recent research mainly focuses on the development of the polysaccharide based functional materials. Hydrogel derived materials are a source of great motivation for the development of drug delivery (DD) carriers with inherent therapeutic potential.
View Article and Find Full Text PDFEnviron Health (Wash)
September 2024
Int J Biol Macromol
October 2024
The main focus of the present research is to design network hydrogels derived from natural polymers to promote a sustainable future. Multifunctional hydrogels were prepared by combining sterculia gum (SG), phosphorester -cyclic amide polymers for bio-medical applications including drug delivery (DD). The antibiotic drug ceftriaxone was incorporated into hydrogels to enhance wound healing potential.
View Article and Find Full Text PDFThe effect of varying extrusion conditions on the functional properties of hulless barley-mung bean (70:30) extruded snacks was investigated using response surface methodology with feed moisture (FM), barrel temperature (BT), and screw speed (SS) as process variables. Results revealed significant impacts on functional characteristics with varying extrusion conditions. Bulk density (BD) of extruded snacks ranged from 0.
View Article and Find Full Text PDFThe article explores the synthesis of network hydrogels derived from moringa gum (MG) through a grafting reaction with poly (vinylsulfonic acid) and carbopol. These hydrogels are designed for use in drug delivery (DD) and wound hydrogels dressing (HYDR) applications. The copolymers were characterized by FESEM, EDX, AFM, FTIR, C NMR, XRD and DSC.
View Article and Find Full Text PDFRecently, various efforts have been made to explore the potential of natural polysaccharides derived from sea weeds to promote sustainable development. Herein, carrageenan (CG), a polysaccharide extracted from red sea algae, was utilized to design network structures as hydrogels, aimed at significant applications in drug delivery (DD) systems. Hydrogels were designed by graft copolymerization reaction of poly(bis [2-methacryloyloxy] ethyl phosphate [poly(BMEP)] and poly(acrylic acid) [poly(AAc)] onto CG in the presence of a crosslinking agent.
View Article and Find Full Text PDFSci Total Environ
August 2024
Microfluidics, also called lab-on-a-chip, represents an emerging research platform that permits more precise and manipulation of samples at the microscale or even down to the nanoscale (nanofluidic) including picoliter droplets, microparticles, and microbes within miniaturized and highly integrated devices. This groundbreaking technology has made significant strides across multiple disciplines by providing an unprecedented view of physical, chemical, and biological events, fostering a holistic and an in-depth understanding of complex systems. The application of microfluidics to address the challenges in environmental science is likely to contribute to our better understanding, however, it's not yet fully developed.
View Article and Find Full Text PDFAntimicrobial resistance (AMR), caused by microbial infections, has become a major contributor to morbid rates of mortality worldwide and a serious threat to public health. The exponential increase in resistant pathogen strains including () and () poses significant hurdles in the health sector due to their greater resistance to traditional treatments and medicines. Efforts to tackle infectious diseases caused by resistant microbes have prompted the development of novel antibacterial agents.
View Article and Find Full Text PDFNanomaterials (Basel)
May 2024
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring.
View Article and Find Full Text PDFGlioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment.
View Article and Find Full Text PDFGammaherpesviruses (γHVs) are recognized as important pathogens in humans but their relationship with other animal hosts, especially wildlife species, is less well characterized. Our objectives were to examine natural (EfHV) infections in their host, the big brown bat (), and determine whether infection is associated with disease. In tissue samples from 132 individual big brown bats, EfHV DNA was detected by polymerase chain reaction in 41 bats.
View Article and Find Full Text PDFRecently, various innovative advancements have been made in carbohydrate research to design versatile materials for biomedical applications. The current research focuses on the development of copolymeric hydrogel wound dressings (HWD) using a combination of aloe vera (AV) - sterculia gum (SG) - poly (vinylsulfonic acid) (VSA)-based with the aim to enhancing their efficacy in drug delivery (DD) applications. These hydrogel dressings were encapsulated with levofloxacin and lidocaine to address both microbial infection and pain.
View Article and Find Full Text PDF