Publications by authors named "Baayla D C Boon"

The link between regional tau load and clinical manifestation of Alzheimer's disease (AD) highlights the importance of characterizing spatial tau distribution across disease variants. In typical (memory-predominant) AD, the spatial progression of tau pathology mirrors the functional connections from temporal lobe epicenters. However, given the limited spatial heterogeneity of tau in typical AD, atypical (non-amnestic-predominant) AD variants with distinct tau patterns provide a key opportunity to investigate the universality of connectivity as a scaffold for tau progression.

View Article and Find Full Text PDF

Background: Plasma biomarkers for Alzheimer's disease and neurodegeneration have shown accurate prediction of underlying neuropathology. However, chronic cardiovascular risk factors such as diabetes and hypertension are associated with plasma biomarker levels and can influence the accurate prediction of underlying neuropathologic changes.

Objective: To understand the interaction between plasma biomarkers of Alzheimer's disease and neurodegeneration with cardiovascular risk factors in relation to neuropathologic change in a heterogenous population to ascertain a more accurate utilization of these biomarkers.

View Article and Find Full Text PDF

The apolipoprotein E (APOE) gene is the strongest genetic risk modifier for Alzheimer's disease (AD), with the APOE4 allele increasing risk and APOE2 decreasing it compared with the common APOE3 allele. Using single-nucleus RNA sequencing of the temporal cortex from APOE2 carriers, APOE3 homozygotes, and APOE4 carriers, we found that AD-associated transcriptomic changes were highly APOE genotype dependent. Comparing AD with controls, APOE2 carriers showed upregulated synaptic and myelination-related pathways, preserving synapses and myelination at the protein level.

View Article and Find Full Text PDF

We present a novel method for the label-free detection of amyloid-beta (Aβ) plaques, the key hallmark of Alzheimer's disease, in human brain tissue sections. Conventionally, immunohistochemistry (IHC) is employed for the characterization of Aβ plaques, hindering subsequent analysis. Here, a semi-supervised convolutional neural network (CNN) is trained to detect Aβ plaques in quantum cascade laser infrared (QCL-IR) microscopy images.

View Article and Find Full Text PDF

Aims: Although the neuroanatomical distribution of tau and amyloid-β is well studied in Alzheimer's disease (AD) (non)-amnestic clinical variants, that of neuroinflammation remains unexplored. We investigate the neuroanatomical distribution of activated myeloid cells, astrocytes, and complement alongside amyloid-β and phosphorylated tau in a clinically well-defined prospectively collected AD cohort.

Methods: Clinical variants were diagnosed antemortem, and brain tissue was collected post-mortem.

View Article and Find Full Text PDF

Introduction: Delay in diagnosis of posterior cortical atrophy (PCA) syndrome is common, and the lack of familiarity with assessment tools for identifying visual cortical dysfunction is a contributing factor. We propose recommendations for the approach to the evaluation of PCA clinical features during the office visit, the neuropsychological evaluation, and the research setting. A recommended screening battery for eye clinics is also proposed.

View Article and Find Full Text PDF

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement.

Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy.

Design, Setting, And Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020.

View Article and Find Full Text PDF

Background: Posterior cortical atrophy is a rare syndrome characterised by early, prominent, and progressive impairment in visuoperceptual and visuospatial processing. The disorder has been associated with underlying neuropathological features of Alzheimer's disease, but large-scale biomarker and neuropathological studies are scarce. We aimed to describe demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy in a large international cohort.

View Article and Find Full Text PDF

Background And Objectives: Alzheimer disease (AD) is neuropathologically classified into 3 corticolimbic subtypes based on the neurofibrillary tangle distribution throughout the hippocampus and association cortices: limbic predominant, typical, and hippocampal sparing. In vivo, a fourth subtype, dubbed "minimal atrophy," was identified using structural MRI. The objective of this study was to identify a neuropathologic proxy for the neuroimaging-defined minimal atrophy subtype.

View Article and Find Full Text PDF

Background: Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer's disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes.

Methods: We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-tau at threonine 181 and threonine 217 (p-tau181, p-tau217) available within 3 years of death.

View Article and Find Full Text PDF

The retina is a potential source of biomarkers for the detection of neurodegenerative diseases. Accumulation of phosphorylated tau (p-tau) in the brain is a pathological feature characteristic for Alzheimer's disease (AD) and primary tauopathies. In this study the presence of p-tau in the retina in relation to tau pathology in the brain was assessed.

View Article and Find Full Text PDF

Cognitive deficits in Alzheimer's disease, specifically amnestic (memory dominant) deficits, are associated with cholinergic degeneration in the basal forebrain. The cholinergic nucleus within the basal forebrain, the nucleus basalis of Meynert, exhibits local atrophy and reduced cortical tract integrity on MRI, and reveals amyloid-β and phosphorylated-tau pathology at autopsy. To understand the pathophysiology of nucleus basalis of Meynert atrophy and its neocortical projections in Alzheimer's disease, we used a combined post-mortem in situ MRI and histopathology approach.

View Article and Find Full Text PDF

Aims: The loss of von Economo neurons (VENs) and GABA receptor subunit theta (GABRQ) containing neurons is linked to early changes in social-emotional cognition and is seen in frontotemporal dementia (FTD) due to C9orf72 repeat expansion. We investigate the vulnerability of VENs and GABRQ-expressing neurons in sporadic and genetic forms of FTD with different underlying molecular pathology and their association with the presence and severity of behavioural symptoms.

Methods: We quantified VENs and GABRQ-immunopositive neurons in the anterior cingulate cortex (ACC) in FTD with underlying TDP43 (FTLD-TDP) (n = 34), tau (FTLD-tau) (n = 24) or FUS (FTLD-FUS) (n = 8) pathology, neurologically healthy controls (n = 12) and Alzheimer's disease (AD) (n = 7).

View Article and Find Full Text PDF

Alzheimer's disease is characterized by cortical atrophy on MRI and abnormal depositions of amyloid-beta, phosphorylated-tau and inflammation pathologically. However, the relative contribution of these pathological hallmarks to cortical atrophy, a widely used MRI biomarker in Alzheimer's disease, is yet to be defined. Therefore, the aim of this study was to identify the histopathological correlates of MRI cortical atrophy in Alzheimer's disease donors, and its typical amnestic and atypical non-amnestic phenotypes.

View Article and Find Full Text PDF

The accumulation of fibrillar amyloid-β (Aβ) peptides alongside or within the cerebral vasculature is the hallmark of cerebral amyloid angiopathy (CAA). This condition commonly co-occurs with Alzheimer's disease (AD) and leads to cerebral microbleeds, intracranial hemorrhages, and stroke. CAA also occurs sporadically in an age-dependent fashion and can be accelerated by the presence of familial Aβ mutant peptides.

View Article and Find Full Text PDF

Alzheimer's disease (AD) neuropathology is characterized by hyperphosphorylated tau containing neurofibrillary tangles and amyloid-beta (Aβ) plaques. Normally these hallmarks are studied by (immuno-) histological techniques requiring chemical pretreatment and indirect labelling. Label-free imaging enables one to visualize normal tissue and pathology in its native form.

View Article and Find Full Text PDF

The neuropathology of Alzheimer's disease (AD) is characterized by hyperphosphorylated tau neurofibrillary tangles (NFTs) and amyloid-beta (Aβ) plaques. Aβ plaques are hypothesized to follow a development sequence starting with diffuse plaques, which evolve into more compact plaques and finally mature into the classic cored plaque type. A better molecular understanding of Aβ pathology is crucial, as the role of Aβ plaques in AD pathogenesis is under debate.

View Article and Find Full Text PDF

Objective: Accumulation of amyloid-β is among the earliest changes in Alzheimer's disease (AD). Amyloid-β positron emission tomography (PET) and Aβ in cerebrospinal fluid (CSF) both assess amyloid-β pathology in-vivo, but 10-20% of cases show discordant (CSF+/PET- or CSF-/PET+) results. The neuropathological correspondence with amyloid-β CSF/PET discordance is unknown.

View Article and Find Full Text PDF

  MRI has been used as an intermediate between brain histo(patho)logy and imaging. However, it is not known how comparable   is to imaging. We report the unique situation of a patient with familial early-onset Alzheimer's disease due to a mutation, who underwent brain MRI and   imaging only 4 days apart.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by amyloid-beta (Aβ) deposits, which come in myriad morphologies with varying clinical relevance. Previously, we observed an atypical Aβ deposit, referred to as the coarse-grained plaque. In this study, we evaluate the plaque's association with clinical disease and perform in-depth immunohistochemical and morphological characterization.

View Article and Find Full Text PDF

Using 7T T2-weighted imaging, we scanned post-mortem hemispheres of Alzheimer patients and age-matched controls to describe the patterns of appearance of cortical lamination on T2*-weighted MRI in the medial temporal lobe and to assess the changes in Alzheimer patients versus controls. While controls showed a hypointense line of Baillarger in the majority of the cases, appearance of cortical lamination varied to a greater extent in the Alzheimer patients. Severely distorted cortical lamination was also observed in advanced stage Alzheimer patients and presented itself as a broad hypointense inhomogeneous band, covering a large part of the cortical width.

View Article and Find Full Text PDF

This single case study examines selective Pittsburgh compound-B (PiB) binding to an intracerebral light-chain amyloidoma using a 90-minute dynamic [11C]PiB-PET scan and brain biopsy tissue. Parametric non-displaceable binding potential (BPND) images showed low specific binding in the amyloidoma (BPND = 0.23), while relative tracer delivery was adequate (R1 = 0.

View Article and Find Full Text PDF

Background: While most patients with Alzheimer's disease (AD) present with memory complaints, 30% of patients with early disease onset present with non-amnestic symptoms. This atypical presentation is thought to be caused by a different spreading of neurofibrillary tangles (NFT) than originally proposed by Braak and Braak. Recent studies suggest a prominent role for neuroinflammation in the spreading of tau pathology.

View Article and Find Full Text PDF