Background The pathophysiological mechanism behind adverse outcomes associated with ischemia-inducing epicardial coronary stenoses and microcirculatory dysfunction remains unclear. Wall shear stress (WSS) plays an important role in atherosclerotic plaque progression and vulnerability. We aimed to evaluate the relationship between WSS, functionally significant epicardial coronary stenoses, and microcirculatory dysfunction.
View Article and Find Full Text PDFComput Methods Programs Biomed
April 2020
The aim of this study is to demonstrate the implications of using different blood rheological models in the simulation of blood flow dynamics in atherosclerotic coronary arteries. Computational fluid dynamics simulation was performed using three-dimensional (3D) patient-specific models of diseased left anterior descending (LAD) coronary arteries with varying degrees of stenosis severity. The three-dimensional arterial models were reconstructed from 3D quantitative coronary angiography, and input flow conditions were prescribed with blood flow conditions measured in-vivo.
View Article and Find Full Text PDFComput Methods Programs Biomed
March 2020
Background And Objective: Blood flow variation during cardiac cycle is the main mechanism of atherosclerotic development which is dependent on.
Methods: The present work mainly tends to investigate stenosis effect in dynamic curvature of coronary artery. This paper presents numerical investigations on wall shear stress profiles in three-dimensional pulsatile flow through curved stenotic coronary arteries for both static and dynamic model.
The relationship between carotid blood flow and carotid intraplaque haemorrhage (IPH) is not fully understood. This study was to investigate the relationship between local haemodynamics and carotid plaques with IPH associated with severe artery stenosis. Fifty-nine patients with carotid atherosclerosis were enrolled in this study and underwent magnetic resonance imaging (MRI) measurement.
View Article and Find Full Text PDFThe ever-increasing development of nanotechnology has led to the creation of nanomaterials with spiral geometry such as graphene helicoids (GHs) that are mainly used for mechanical, chemical, and electrical applications. Controlling the properties of these nanomaterials with geometric changes and functionalizations is the most common and accessible task. However, functionalization leads to specific applications.
View Article and Find Full Text PDFIn this corrigendum, the authors would like to acknowledge the cardiac catheterization laboratory staff at Tehran Heart Center for their assistance in performing the studies under the ethics application TH38-02-2017-20.
View Article and Find Full Text PDFComput Methods Programs Biomed
July 2019
Objectives: There is an association between long and thick myocardial bridging (MB), haemodynamic perturbations and increased risk of myocardial infarction. This study aims to investigate the alteration in coronary haemodynamics with increasing the length of MB.
Methods: Angiography and intravascular ultrasound were performed in 10 patients with varying length of MB in the left anterior descending (LAD) artery.
Although intravascular ultrasound (IVUS) is the commonest intravascular imaging modality, it still is inefficient for clinical use as it requires laborious manual analysis. This study demonstrates the feasibility of a near real-time fully automated technology for accurate identification, detection, and quantification of luminal borders in intravascular images. This technology uses a combination of the novel approaches of a self-tuning engine, dynamic and static masking systems, radar-wise scan, and contour correction cycle method.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
May 2019
Objectives: This study aims to examine the alteration in coronary haemodynamics with increasing the severity of vessel compression caused by myocardial bridging (MB).
Methods: Angiography and intravascular ultrasound were performed in 10 patients with MB with varying severities of systolic compression in the left anterior descending (LAD) artery. Computer models of MB were developed and transient computational fluid dynamics simulations were performed to derive distribution of blood residence time and shear stress.
Myocardial bridging (MB) is associated with endothelial dysfunction in patients with angina and non-obstructive coronary artery disease. This study aims to determine if there is a link between abnormal blood flow patterns and endothelial dysfunction in patients with MB. Ten patients with MB in their left anterior descending (LAD) artery were selected, 5 of whom had endothelial dysfunction and 5 had no endothelial dysfunction based on their response to acetylcholine.
View Article and Find Full Text PDFClin Biomech (Bristol)
December 2018
Background: Pathological shear stress is associated with distinct pathogenic biological pathways relevant to coronary thrombosis and atherogenesis. Although the individual effects of lesion characteristics including stenosis severity, eccentricity and lesion length on coronary haemodynamics is known, their relative importance remains poorly understood.
Methods: Computational fluid dynamics (CFD) was implemented for haemodynamic analysis of 104 coronary arteries.
J Am Heart Assoc
October 2018
Background Remote ischemic preconditioning (RIPC) attenuates myocardial damage during elective and primary percutaneous coronary intervention. Recent studies suggest that coronary microcirculatory function is an important determinant of clinical outcome. The aim of this study was to assess the effect of RIPC on markers of microcirculatory function.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2018
Objectives: We aim to investigate the effect of a magnetic field with varying intensities on haemodynamic perturbations in a cohort of patients with coronary artery disease.
Methods: Transient computational fluid dynamics (CFD) simulations were performed in three-dimensional (3D) models of coronary arteries reconstructed from 3D quantitative coronary angiography. The effect of magnetic field on wall shear stress (WSS) derived parameters including maximum wall shear stress (MWSS) and size of regions with low wall shear stress (ALWSS) as well as length of flow recirculation zones were determined.
Background: The carotid blood flow following carotid endarterectomy (CEA) is not fully understood. Computational fluid dynamics (CFD) is a promising method to study blood flow. This study is to investigate local hemodynamic characteristics after CEA via the use of unenhanced magnetic resonance angiography (MRA) and CFD.
View Article and Find Full Text PDFJ Biomech Eng
September 2018
Computational fluid dynamics (CFD) modeling of myocardial bridging (MB) remains challenging due to its dynamic and phasic nature. This study aims to develop a patient-specific CFD model of MB. There were two parts to this study.
View Article and Find Full Text PDFJ Med Eng Technol
February 2018
Haemodynamic perturbations including elevated blood viscosity, low and oscillatory shear stress are understood to be important pathogenic mediators in atherosclerosis. These haemodynamic abnormalities are influenced by the presence of a magnetic field. This study conducted computational fluid dynamics (CFD) analysis in 4 coronary artery models, derived from authentic human coronaries, with mild and moderate and severe stenosis severity.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
October 2017
The aim of this study was to analyse the flow dynamics in an idealised model of the aorta-renal bifurcation using flow visualisation, with a particular focus on the effect of aorta-to-renal flow ratio and flow spirality. The recirculation length was longest when there was low flow in the renal artery and smaller in the presence of spiral flow. The results also indicate that patients without spiral flow or who have low flow in the renal artery due to the presence of stenosis may be susceptible to heightened development of atherosclerotic lesions.
View Article and Find Full Text PDFDiscordance between angiography-based anatomical assessment of coronary stenosis severity and fractional flow reserve (FFR) has been attributed to several factors including lesion length and irregularity, and the myocardial territory supplied by the target vessel. We sought to examine if coronary arterial distensibility is an independent contributor to this discordance. There were two parts to this study.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
July 2017
Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique.
View Article and Find Full Text PDFThe creation of an arteriovenous fistula (AVF) is a common surgical procedure in hemodialysis patients suffering from end-stage renal disease (ESRD). However, several complications may occur after surgery, including thrombosis, stenosis, and aneurysm. These complications are attributed to hemodynamics perturbations including pathophysiological wall shear stress (WSS) and flow recirculation zones.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
February 2017
Unlabelled: Abnormal haemodynamic parameters are associated with atheroma plaque progression and instability in coronary arteries. Flow recirculation, shear stress and pressure gradient are understood to be important pathogenic mediators in coronary disease. The effect of freedom of coronary artery movement on these parameters is still unknown.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
December 2016
Thrombus in a femoral artery may form under stagnant flow conditions which vary depending on the local arterial waveform. Four different physiological flow waveforms - poor (blunt) monophasic, sharp monophasic, biphasic and triphasic - can exist in the femoral artery as a result of different levels of peripheral arterial disease progression. This study aims to examine the effect of different physiological waveforms on femoral artery haemodynamics.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
December 2016
The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations.
View Article and Find Full Text PDFBackground: Haemodynamic parameters such as separated flow regions play a key role in the progression and development of atherosclerotic lesions in renal arteries, which typically originate at the renal ostium.
Objective: The aim of this study was to analyse the flow dynamics in a two-dimensional model of aorta-renal bifurcation, with a particular focus on the effect of aorta-to-renal flow ratio on flow separation regions.
Method: A particle image velocimetry (PIV) experiment was conducted in an acrylic model of the aorta-renal ostium and the relationship between renal-to-aorta flow ratio and separated flow region was investigated.
Technol Health Care
April 2014
Background: Flow recirculation and shear strain are physiological processes within coronary arteries which are associated with pathogenic biological pathways. Distinct Quite apart from coronary stenosis severity, lesion eccentricity can cause flow recirculation and affect shear strain levels within human coronary arteries.
Objective: The aim of this study is to analyse the effect of lesion eccentricity on the transient flow behaviour in a model of a coronary artery and also to investigate the correlation between Reynolds number (Re) and the eccentricity effect on flow behaviour.