Publications by authors named "Aparna Balakrishna"

The rice (Oryza sativa L.) α/β hydrolase D14 LIKE (D14L), a paralog of the strigolactone receptor D14, is essential for the establishment of arbuscular mycorrhizal (AM) symbiosis and responses to karrikins, smoke-derived compounds that regulate several developmental processes. It is supposed that D14L is the receptor for a yet unidentified endogenous growth regulator.

View Article and Find Full Text PDF
Article Synopsis
  • - Carotenoids are vital for photosynthesis and act as precursors for plant hormones called strigolactones (SLs), which are important for plant growth and stress response.
  • - The synthesis of SLs starts with the enzyme DWARF27 (D27) converting all--carotene into 9--β-carotene; research revealed a similar D27 protein in certain cyanobacteria that do not produce SLs.
  • - Active studies showed that the cyanobacterial D27 functions as an isomerase for various carotenoids but has a lower conversion efficiency compared to plant D27 enzymes and suggests that D27 in cyanobacteria may represent an ancestral form related to those in more complex photos
View Article and Find Full Text PDF

The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line.

View Article and Find Full Text PDF

Strigolactones (SLs) play a crucial role in regulating plant architecture and mediating rhizosphere interactions. They are synthesized from all-trans-β-carotene converted into the intermediate carlactone (CL) via the intermediate 9-cis-β-apo-10'-carotenal. Recent studies indicate that plants can also synthesize 3-OH-CL from all-trans-β-zeaxanthin via the intermediate 9-cis-3-OH-β-apo-10'-carotenal.

View Article and Find Full Text PDF

Strigolactones (SLs) regulate many developmental processes, including shoot-branching/tillering, and mediate rhizospheric interactions. SLs originate from carlactone (CL) and are structurally diverse, divided into a canonical and a noncanonical subfamily. Rice contains two canonical SLs, 4-deoxyorobanchol (4DO) and orobanchol (Oro), which are common in different plant species.

View Article and Find Full Text PDF

Vitamin A deficiency remains a severe global health issue, which creates a need to biofortify crops with provitamin A carotenoids (PACs). Expanding plant cell capacity for synthesis and storing of PACs outside the plastids is a promising biofortification strategy that has been little explored. Here, we engineered PAC formation and sequestration in the cytosol of Nicotiana benthamiana leaves, Arabidopsis seeds, and citrus callus cells, using a fungal (Neurospora crassa) carotenoid pathway that consists of only three enzymes converting C isopentenyl building blocks formed from mevalonic acid into PACs, including β-carotene.

View Article and Find Full Text PDF

The enzyme DWARF27 (D27) catalyzes the reversible isomerization of all-trans- into 9-cis-β-carotene, initiating strigolactone (SL) biosynthesis. Genomes of higher plants encode two D27-homologs, D27-like1 and -like2, with unknown functions. Here, we investigated the enzymatic activity and biological function of the Arabidopsis D27-like1.

View Article and Find Full Text PDF

Strigolactones (SLs) are a plant hormone regulating different processes in plant development and adjusting plant's architecture to nutrition availability. Moreover, SLs are released by plants to communicate with beneficial fungi in the rhizosphere where they are, however, abused as chemical cues inducing seed germination of root parasitic weeds, e.g.

View Article and Find Full Text PDF

Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing -resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased seed-germinating activity.

View Article and Find Full Text PDF

Carotenoid cleavage, catalyzed by CAROTENOID CLEAVAGE DIOXYGENASEs (CCDs), provides signaling molecules and precursors of plant hormones. Recently, we showed that zaxinone, a apocarotenoid metabolite formed by the CCD ZAXINONE SYNTHASE (ZAS), is a growth regulator required for normal rice (Oryza sativa) growth and development. The rice genome encodes three OsZAS homologs, called here OsZAS1b, OsZAS1c, and OsZAS2, with unknown functions.

View Article and Find Full Text PDF

Crocins are beneficial antioxidants and potential chemotherapeutics that give raise, together with picrocrocin, to the colour and taste of saffron, the most expensive spice, respectively. Crocins are formed from crocetin dialdehyde that is produced in Crocus sativus from zeaxanthin by the carotenoid cleavage dioxygenase 2L (CsCCD2L), while GjCCD4a from Gardenia jasminoides, another major source of crocins, converted different carotenoids, including zeaxanthin, into crocetin dialdehyde in bacterio. To establish a biotechnological platform for sustainable production of crocins, we investigated the enzymatic activity of GjCCD4a, in comparison with CsCCD2L, in citrus callus engineered by Agrobacterium-mediated supertransformation of multi genes and in transiently transformed Nicotiana benthamiana leaves.

View Article and Find Full Text PDF

Cytochrome P450 enzymes (CYPs) are involved in metabolic steps that provide structural diversity during the biosynthesis of carotenoids and their oxidative cleavage products called apocarotenoids. Recent studies on bioactive apocarotenoids in plants revealed the necessity of performing further research to uncover the function of novel CYP enzymes that might be involved in apocarotenoid metabolism. We describe a series of in-vitro methods to characterize plant CYPs that metabolize apocarotenoids, using a specific Saccharomyces cerevisiae strain, WAT11, engineered to express a CYP redox partner, Arabidopsis thaliana NADPH-P450 reductase 1 (ATR1).

View Article and Find Full Text PDF

Apocarotenoids (APOs) are a class of carotenoid oxidation products with high structural and functional diversity. Apart from serving as precursors of phytohormones, fungal pheromones and vitamin A, several APOs act as signaling molecules involved in stress response and growth as regulators in plants. To comprehensively profile plant APOs, we established an improved ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometer (UHPLC-Q-Orbitrap MS) analytical platform.

View Article and Find Full Text PDF

The plant hormone strigolactones (SLs) are secreted by plant roots to act as rhizospheric signals. Here, we present a protocol for characterizing plant-released SLs. We first outline all necessary steps required for collection, processing, and analysis of plant root exudates using the C column for SL extraction, followed by liquid chromatography-mass spectrometry (LC-MS) for SL quantification.

View Article and Find Full Text PDF

Abscisic acid (ABA) is an important carotenoid-derived phytohormone that plays essential roles in plant response to biotic and abiotic stresses as well as in various physiological and developmental processes. In Arabidopsis, ABA biosynthesis starts with the epoxidation of zeaxanthin by the ABA DEFICIENT 1 (ABA1) enzyme, leading to epoxycarotenoids; e.g.

View Article and Find Full Text PDF

Carotenoid-derived regulatory metabolites and hormones are generally known to arise through the oxidative cleavage of a single double bond in the carotenoid backbone, which yields mono-carbonyl products called apocarotenoids. However, the extended conjugated double bond system of these pigments predestines them also to repeated cleavage forming dialdehyde products, diapocarotenoids, which have been less investigated due to their instability and low abundance. Recently, we reported on the short diapocarotenoid anchorene as an endogenous Arabidopsis metabolite and specific signaling molecule that promotes anchor root formation.

View Article and Find Full Text PDF

We developed a chemical derivatization based ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometer (UHPLC-Q-Orbitrap MS) analytical method to identify low-abundant and instable carotenoid-derived dialdehydes (DIALs, diapocarotenoids) from plants. Application of this method enhances the MS response signal of DIALs, enabling the detection of diapocarotenoids, which is crucial for understanding the function of these compounds and for elucidating the carotenoid oxidative metabolic pathway in plants.

View Article and Find Full Text PDF

Oxidative cleavage of carotenoids leads to dialdehydes (diapocarotenoids, DIALs) in addition to the widely known apocarotenoids. DIALs are biologically active compounds that presumably impact human health and play different roles in plant development and carotenoid metabolism. However, detection of DIALs in plants is challenging due to their instability, low abundance, and poor ionization efficiency in mass spectrometry.

View Article and Find Full Text PDF

Carotenoid cleavage dioxygenases (CCDs) form hormones and signaling molecules. Here we show that a member of an overlooked plant CCD subfamily from rice, that we name Zaxinone Synthase (ZAS), can produce zaxinone, a novel apocarotenoid metabolite in vitro. Loss-of-function mutants (zas) contain less zaxinone, exhibit retarded growth and showed elevated levels of strigolactones (SLs), a hormone that determines plant architecture, mediates mycorrhization and facilitates infestation by root parasitic weeds, such as Striga spp.

View Article and Find Full Text PDF

Apocarotenoid glycosylation serves as a valve regulating carotenoid homeostasis in plants and may contribute to their response to photo-oxidative stress. However, an analytical method that allows comprehensive and sensitive profiling of glycosylated apocarotenoids (GAPOs) is still missing. We developed an efficient ultra-high performance liquid chromatography-high resolution-mass spectrometry (UHPLC-HR-MS) method to analyze 25 GAPOs present in carotenoid-accumulating E.

View Article and Find Full Text PDF

In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-β-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment.

View Article and Find Full Text PDF