Background: Cardiac diffusion tensor imaging (cDTI) is an emerging technique for microstructural characterization of the heart and has shown clinical potential in a range of cardiomyopathies. However, there is substantial variation reported for in vivo cDTI results across the literature, and sensitivity of cDTI to differences in imaging sites, scanners, acquisition protocols and post-processing methods remains incompletely understood.
Methods: SIGNET is a prospective multi-centre, observational study in travelling and non-travelling healthy volunteers.
Diffusion tensor cardiovascular magnetic resonance (DTCMR) is the only non-invasive method for visualizing myocardial microstructure, but it is challenged by inconsistent breath-holds and imperfect cardiac triggering, causing in-plane shifts and through-plane warping with an inadequate tensor fitting. While rigid registration corrects in-plane shifts, deformable registration risks distorting the diffusion distribution, and selecting a reference frame among low SNR frames is challenging. Existing pairwise deep learning and iterative methods are unsuitable for DTCMR due to their inability to handle the drastic in-plane motion and disentangle the diffusion contrast distortion with through-plane motions on low SNR frames, which compromises the accuracy of clinical biomarker tensor estimation.
View Article and Find Full Text PDFBackground: Myocardial strain is a valuable biomarker for diagnosing and predicting cardiac conditions, offering additional prognostic information to traditional metrics such as ejection fraction. While cardiovascular magnetic resonance (CMR) methods, particularly cine displacement encoding with stimulated echoes (DENSE), are the gold standard for strain estimation, evaluation of regional strain estimation requires precise ground truth. This study introduces DENSE-SIM, an open-source simulation pipeline for generating realistic cine DENSE images with high-resolution known ground-truth strain, enabling evaluation of accuracy and precision in strain analysis pipelines.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
June 2025
Thanks to recent developments in cardiovascular magnetic resonance (CMR), cardiac diffusion-weighted magnetic resonance is fast emerging in a range of clinical applications. Cardiac diffusion-weighted imaging (cDWI) and diffusion tensor imaging (cDTI) now enable investigators and clinicians to assess and quantify the tridimensional microstructure of the heart. Free-contrast DWI is uniquely sensitized to the presence and displacement of water molecules within the myocardial tissue, including the intracellular, extracellular, and intravascular spaces.
View Article and Find Full Text PDFBackground And Aims: Microstructural disturbances underlie dysfunctional contraction and adverse left ventricular (LV) remodelling after ST-elevation myocardial infarction (STEMI). Biphasic diffusion tensor cardiovascular magnetic resonance (DT-CMR) quantifies dynamic reorientation of sheetlets (E2A) from diastole to systole during myocardial thickening, and markers of tissue integrity [mean diffusivity (MD) and fractional anisotropy (FA)]. This study investigated whether microstructural alterations identified by biphasic DT-CMR: (i) enable contrast-free detection of acute myocardial infarction (MI); (ii) associate with severity of myocardial injury and contractile dysfunction; and (iii) predict adverse LV remodelling.
View Article and Find Full Text PDFPhys Med Biol
September 2024
Respiratory motion, cardiac motion and inherently low signal-to-noise ratio (SNR) are major limitations ofcardiac diffusion tensor imaging (DTI). We propose a novel enhancement method that uses unsupervised learning based invertible wavelet scattering (IWS) to improve the quality ofcardiac DTI.Our method starts by extracting nearly transformation-invariant features from multiple cardiac diffusion-weighted (DW) image acquisitions using multi-scale wavelet scattering (WS).
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
December 2024
Background: In-vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) is an emerging technique for microstructural tissue characterization in the myocardium. Most studies are performed at 3T, where higher signal-to-noise ratio (SNR) should benefit this signal-starved method. However, a few studies have suggested that DT-CMR is possible at 1.
View Article and Find Full Text PDFImmunosuppressants are clinically approved drugs to treat the potential rejection of transplanted organs and require frequent monitoring due to their narrow therapeutic window. Immunophilins are small proteins that bind immunosuppressants with high affinity, yet there are no examples of fluorogenic immunophilins and their potential application as optical biosensors for immunosuppressive drugs in clinical biosamples. In the present work, we designed novel diazonium BODIPY salts for the site-specific labeling of tyrosine residues in peptides via solid-phase synthesis as well as for late-stage functionalization of whole recombinant proteins.
View Article and Find Full Text PDFPurpose: The study aims to assess the potential of referenceless methods of EPI ghost correction to accelerate the acquisition of in vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) data using both computational simulations and data from in vivo experiments.
Methods: Three referenceless EPI ghost correction methods were evaluated on mid-ventricular short axis DT-CMR spin echo and STEAM datasets from 20 healthy subjects at 3T. The reduced field of view excitation technique was used to automatically quantify the Nyquist ghosts, and DT-CMR images were fit to a linear ghost model for correction.
Objective: The excellent blood and fat suppression of stimulated echo acquisition mode (STEAM) can be combined with saturation recovery single-shot acquisition (SASHA) in a novel STEAM-SASHA sequence for right ventricular (RV) native T1 mapping.
Materials And Methods: STEAM-SASHA splits magnetization preparation over two cardiac cycles, nulling blood signal and allowing fat signal to decay. Breath-hold T1 mapping was performed in a T1 phantom and twice in 10 volunteers using STEAM-SASHA and a modified Look-Locker sequence at peak systole at 3T.
In the last two decades the use of biophysical assays and methods in medicinal chemistry has increased significantly, to meet the demands of the novel targets and modalities that drug discoverers are looking to tackle. The desire to obtain accurate affinities, kinetics, thermodynamics and structural data as early as possible in the drug discovery process has fuelled this innovation. This review introduces the principles underlying the techniques in common use and provides a perspective on the weaknesses and strengths of different methods.
View Article and Find Full Text PDFPurpose: To study the sensitivity of diffusion tensor cardiovascular magnetic resonance (DT-CMR) to microvascular perfusion and changes in cell permeability.
Methods: Monte Carlo (MC) random walk simulations in the myocardium have been performed to simulate self-diffusion of water molecules in histology-based media with varying extracellular volume fraction (ECV) and permeable membranes. The effect of microvascular perfusion on simulations of the DT-CMR signal has been incorporated by adding the contribution of particles traveling through an anisotropic capillary network to the diffusion signal.
Radiol Cardiothorac Imaging
June 2023
Biomech Model Mechanobiol
August 2023
Left ventricle myocardium has a complex micro-architecture, which was revealed to consist of myocyte bundles arranged in a series of laminar sheetlets. Recent imaging studies demonstrated that these sheetlets re-orientated and likely slided over each other during the deformations between systole and diastole, and that sheetlet dynamics were altered during cardiomyopathy. However, the biomechanical effect of sheetlet sliding is not well-understood, which is the focus here.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
March 2023
Background: Cine Displacement Encoding with Stimulated Echoes (DENSE) facilitates the quantification of myocardial deformation, by encoding tissue displacements in the cardiovascular magnetic resonance (CMR) image phase, from which myocardial strain can be estimated with high accuracy and reproducibility. Current methods for analyzing DENSE images still heavily rely on user input, making this process time-consuming and subject to inter-observer variability. The present study sought to develop a spatio-temporal deep learning model for segmentation of the left-ventricular (LV) myocardium, as spatial networks often fail due to contrast-related properties of DENSE images.
View Article and Find Full Text PDFIn this paper we present random walk based solutions to diffusion in semi-permeable layered media with varying diffusivity. We propose a novel transit model for solving the interaction of random walkers with a membrane. This hybrid model is based on treating the membrane permeability and the step change in diffusion coefficient as two interactions separated by an infinitesimally small layer.
View Article and Find Full Text PDFJ Magn Reson Imaging
December 2022
Background: In vivo cardiac diffusion tensor imaging (cDTI) characterizes myocardial microstructure. Despite its potential clinical impact, considerable technical challenges exist due to the inherent low signal-to-noise ratio.
Purpose: To reduce scan time toward one breath-hold by reconstructing diffusion tensors for in vivo cDTI with a fitting-free deep learning approach.
Background: While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (E), longitudinal (E) and radial (E) strain, torsion, and segmental E at multiple centers.
View Article and Find Full Text PDFCardiac motion results in image artefacts and quantification errors in many cardiovascular magnetic resonance (CMR) techniques, including microstructural assessment using diffusion tensor cardiovascular magnetic resonance (DT-CMR). Here, we develop a CMR-compatible isolated perfused porcine heart model that allows comparison of data obtained in beating and arrested states. Ten porcine hearts (8/10 for protocol optimisation) were harvested using a donor heart retrieval protocol and transported to the remote CMR facility.
View Article and Find Full Text PDFCardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo.
View Article and Find Full Text PDF