Front Cell Dev Biol
November 2023
In our study, we harnessed an original Enhanced Speed Structured Illumination Microscopy (Fast-SIM) imaging setup to explore the dynamics of mitochondrial and inner membrane ultrastructure under specific photo-oxidation stress induced by Chlorin-e6 and light irradiation. Notably, our Fast-SIM system allowed us to observe and quantify a distinct remodeling and shortening of the mitochondrial structure after 60-80 s of irradiation. These changes were accompanied by fusion events of adjacent inner membrane cristae and global swelling of the organelle.
View Article and Find Full Text PDFSignificance: Adaptive optics (AO) has been implemented on several microscopy setups and has proven its ability to increase both signal and resolution. However, reported configurations are not suited for fast imaging of live samples or are based on an invasive or complex implementation method.
Aim: Provide a fast aberration correction method with an easy to implement AO module compatible with light-sheet fluorescence microscopy (LSFM) for enhanced imaging of live samples.
Deep fluorescence imaging in mammalian brain tissues remains challenging due to scattering and optical aberration-induced loss in signal and resolution. Correction of aberrations using adaptive optics (AO) requires their reliable measurement in the tissues. Here, we show that an extended-source Shack-Hartmann wavefront sensor (ESSH) allows quantitative aberration measurements through fixed brain slices with a thickness up to four times their scattering length.
View Article and Find Full Text PDFThe efficient intraoperative identification of cancers requires the development of the bright, minimally-toxic, tumor-specific near-infrared (NIR) probes as contrast agents. Luminescent semiconductor quantum dots (QDs) offer several unique advantages for in vivo cellular imaging by providing bright and photostable fluorescent probes. Here, we present the synthesis of ZnCuInSe/ZnS core/shell QDs emitting in NIR (~750 nm) conjugated to NAVPNLRGDLQVLAQKVART (A20FMDV2) peptide for targeting integrin-rich head and neck squamous cell carcinoma (HNSCC).
View Article and Find Full Text PDFIn the last few years, zwitterionic polymers have been developed as antifouling surface coatings. However, their ability to completely suppress protein adsorption at the surface of nanoparticles in complex biological media remains undemonstrated. Here we investigate the formation of hard (irreversible) and soft (reversible) protein corona around model nanoparticles (NPs) coated with sulfobetaine (SB), phosphorylcholine (PC) and carboxybetaine (CB) polymer ligands in model albumin solutions and in whole serum.
View Article and Find Full Text PDFWe propose an adaptive optics light-sheet fluorescence microscope (AO-LSFM) for closed-loop aberrations' correction at the emission path, providing intrinsic instrumental simplicity and high accuracy when compared to previously reported schemes. The approach is based on direct wavefront sensing, i.e.
View Article and Find Full Text PDFWhereas in vivo fluorescence imaging of cells immobilized within tissues provides a valuable tool to a broad range of biological studies, it still lacks the sensitivity required to visualize isolated cells circulating fast in the bloodstream due, in particular, to the autofluorescence from endogenous fluorophores. Time-gated imaging of near-infrared emitting ZnCuInSe/ZnS quantum dots (QDs) with fluorescence lifetimes in the range of 150-300 ns enables the efficient rejection of fast autofluorescence photons and the selection of QD fluorescence photons, thus significantly increasing sensitivity. We labeled model erythrocytes as well as lymphoma cells using these QDs coated with a stable zwitterionic polymer surface chemistry.
View Article and Find Full Text PDFWe present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2015
Distinctive optical properties of inorganic quantum dot (QD) nanoparticles promise highly valuable probes for fluorescence-based detection methods, particularly for in vivo diagnostics, cell phenotyping via multiple markers or single molecule tracking. However, despite high hopes, this promise has not been fully realized yet, mainly due to difficulties at producing stable, nontoxic QD bioconjugates of negligible nonspecific binding. Here, a universal platform for antibody binding to QDs is presented that builds upon the controlled functionalization of CdSe/CdS/ZnS nanoparticles capped with a multidentate dithiol/zwitterion copolymer ligand.
View Article and Find Full Text PDFLong-term inspection of biological phenomena requires probes of elevated intra- and extracellular stability and target biospecificity. The high fluorescence and photostability of quantum dot (QD) nanoparticles contributed to foster their promise as bioimaging tools that could overcome limitations associated with traditional fluorophores. However, QDs' potential as a bioimaging platform relies upon a precise control over the surface chemistry modifications of these nano-objects.
View Article and Find Full Text PDFFluorescence imaging is a promising technique for the detection of individual cell migration. Its sensitivity is, however, limited by a high tissue autofluorescence and a poor visible light penetration depth. In order to solve this problem, the fluorescence signal peak wavelength should lie in an absorption and diffusion free region and should be distinguishable, either spectrally or temporally, from the autofluorescence background.
View Article and Find Full Text PDFThe in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been explored, but they have not yet been compared systematically with respect to the QD intracellular stability. In this work, the intracellular aggregation kinetics of QDs for three different surface chemistries based on ligand exchange or encapsulation with amphiphilic polymers are compared.
View Article and Find Full Text PDFWe describe the implementation and use of an adaptive optics loop in the imaging path of a commercial wide field microscope. We show that it is possible to maintain the optical performances of the original microscope when imaging through aberrant biological samples. The sources used for illuminating the adaptive optics loop are spectrally independent, in excitation and emission, from the sample, so they do not appear in the final image, and their use does not contribute to the sample bleaching.
View Article and Find Full Text PDFWe describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique.
View Article and Find Full Text PDFWe have developed a novel surface coating for semiconductor quantum dots (QDs) based on a heterobifunctional ligand that overcomes most of the previous limits of these fluorescent probes in bioimaging applications. Here we show that QDs capped with bidentate zwitterionic dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands are a favorable alternative to polyethylene glycol-coated nanoparticles since they combine small sizes, low nonspecific adsorption, preserved optical properties, and excellent stability over time and a wide range of pH and salinity. Additionally, these QDs can easily be functionalized with biomolecules such as streptavidin (SA) and biotin.
View Article and Find Full Text PDFApertureless scanning near-field optical microscopy has been used to image fluorescent latex spheres with a resolution of a few tens of nanometers and good signal-to-noise ratio. The near-field fluorescence images reveal optical interference with several highly contrasted fringes located around the spheres. The origin of the interference is discussed in detail, and models are used to explain their formation.
View Article and Find Full Text PDF