98%
921
2 minutes
20
The efficient intraoperative identification of cancers requires the development of the bright, minimally-toxic, tumor-specific near-infrared (NIR) probes as contrast agents. Luminescent semiconductor quantum dots (QDs) offer several unique advantages for in vivo cellular imaging by providing bright and photostable fluorescent probes. Here, we present the synthesis of ZnCuInSe/ZnS core/shell QDs emitting in NIR (~750 nm) conjugated to NAVPNLRGDLQVLAQKVART (A20FMDV2) peptide for targeting integrin-rich head and neck squamous cell carcinoma (HNSCC). Integrin is usually not detectable in nonpathological tissues, but is highly upregulated in HNSCC. QD-A20 showed integrin-specific binding in two-dimension (2D) monolayer and three-dimension (3D) spheroid in vitro HNSCC models. QD-A20 exhibit limited penetration (ca. 50 µm) in stroma-rich 3D spheroids. Finally, we demonstrated the potential of these QDs by time-gated fluorescence imaging of stroma-rich 3D spheroids placed onto mm-thick tissue slices to mimic imaging conditions in tissues. Overall, QD-A20 could be considered as highly promising nanoprobes for NIR bioimaging and imaging-guided surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764319 | PMC |
http://dx.doi.org/10.3390/cancers12123727 | DOI Listing |
Cancers (Basel)
December 2020
Research Department, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR7039 CRAN, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France.
The efficient intraoperative identification of cancers requires the development of the bright, minimally-toxic, tumor-specific near-infrared (NIR) probes as contrast agents. Luminescent semiconductor quantum dots (QDs) offer several unique advantages for in vivo cellular imaging by providing bright and photostable fluorescent probes. Here, we present the synthesis of ZnCuInSe/ZnS core/shell QDs emitting in NIR (~750 nm) conjugated to NAVPNLRGDLQVLAQKVART (A20FMDV2) peptide for targeting integrin-rich head and neck squamous cell carcinoma (HNSCC).
View Article and Find Full Text PDFElife
December 2015
UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, United States.
Cell surface receptors are central to the cell's ability to generate coordinated responses to the multitude of biochemical and physical cues in the microenvironment. However, the mechanisms by which receptors enable this concerted cellular response remain unclear. To investigate the effect of cellular tension on cell surface receptors, we combined novel high-resolution imaging and single particle tracking with established biochemical assays to examine TGFβ signaling.
View Article and Find Full Text PDFJ Biol Chem
February 2004
Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah 84112-5550, USA.
Transforming growth factor-beta1 (TGF-beta1) contributes to tumor invasion and cancer progression by increasing the motility of tumor cells. To identify genes involved in TGF-beta-mediated cell migration, the transcriptional profiles of human mammary epithelial cells (HMEC) treated with TGF-beta were compared with untreated cells by cDNA microarray analysis. One gene up-regulated by TGF-beta was recently named kindlerin (Jobard, F.
View Article and Find Full Text PDF