Publications by authors named "Alec Chaves"

The progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH) involves alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the contributions of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis.

View Article and Find Full Text PDF

The progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) to metabolic-dysfunction-associated steatohepatitis (MASH) involves complex alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the relative contribution of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Resveratrol, a natural compound in plants, is being studied for its potential to treat obesity-related issues like insulin resistance.
  • A study analyzed how obesity status (lean vs. severely obese) affects responses to resveratrol in skeletal muscle cells, revealing that lean women showed greater improvements in insulin action with resveratrol than severely obese women.
  • The findings suggest that while resveratrol enhances insulin-stimulated glucose metabolism in both groups, the mechanisms may differ, with AMPK activation playing a key role in severely obese individuals.
View Article and Find Full Text PDF

Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity.

View Article and Find Full Text PDF

Nearly 40% of Americans have obesity and are at increased risk for developing type 2 diabetes. Skeletal muscle is responsible for >80% of insulin-stimulated glucose uptake that is attenuated by the inflammatory milieu of obesity and augmented by aerobic exercise. The receptor for advanced glycation endproducts (RAGE) is an inflammatory receptor directly linking metabolic dysfunction with inflammation.

View Article and Find Full Text PDF

Even-chain acylcarnitine (AC) metabolites, most of which are generated as byproducts of incomplete fatty acid oxidation (FAO), are viewed as biomarkers of mitochondrial lipid stress attributable to one or more metabolic bottlenecks in the β-oxidation pathway. The origins and functional implications of FAO bottlenecks remain poorly understood. Here, we combined a sophisticated mitochondrial phenotyping platform with state-of-the-art molecular profiling tools and multiple two-state mouse models of respiratory function to uncover a mechanism that connects AC accumulation to lipid intolerance, metabolic inflexibility, and respiratory inefficiency in skeletal muscle mitochondria.

View Article and Find Full Text PDF

Preclinical rodent and nonhuman primate models investigating maternal obesity have highlighted the importance of the intrauterine environment in the development of insulin resistance in offspring; however, it remains unclear if these findings can be translated to humans. To investigate possible intrauterine effects in humans, we isolated mesenchymal stem cells (MSCs) from the umbilical cord tissue of infants born to mothers of normal weight or mothers with obesity. Insulin-stimulated glycogen storage was determined in MSCs undergoing myogenesis in vitro.

View Article and Find Full Text PDF

Context: Recent preclinical data suggest exercise during pregnancy can improve the metabolic phenotype not only of the mother, but of the developing offspring as well. However, investigations in human offspring are lacking.

Objective: To characterize the effect of maternal aerobic exercise on the metabolic phenotype of the offspring's mesenchymal stem cells (MSCs).

View Article and Find Full Text PDF

Thioredoxin-interacting protein (TXNIP) negatively effects the redox state and growth signaling via its interactions with thioredoxin (TRX) and regulated in development and DNA damage response 1 (REDD1), respectively. TXNIP expression is downregulated by pathways activated during aerobic exercise (AE), via posttranslational modifications (PTMs; serine phosphorylation and ubiquitination). The purpose of this investigation was to determine the effects of acute AE on TXNIP expression, posttranslational modifications, and its interacting partners, REDD1 and TRX.

View Article and Find Full Text PDF

Recent evidence identifies a potent role for aerobic exercise to modulate the activity of hypothalamic neurons related to appetite; however, these studies have been primarily performed in male rodents. Since females have markedly different neuronal mechanisms regulating food intake, the current study aimed to determine the effects of acute treadmill exercise on hypothalamic neuron populations involved in regulating appetite in female mice. Mature, untrained female mice were exposed to acute sedentary, low- (10 m/min), moderate- (14 m/min), and high (18 m/min)-intensity treadmill exercise in a randomized crossover design.

View Article and Find Full Text PDF

Epidemiological studies show that low birth weight is associated with mortality from cardiovascular disease in adulthood, indicating that chronic diseases could be influenced by hormonal or metabolic insults encountered . This concept, now known as the Developmental Origins of Health and Disease hypothesis, postulates that the intrauterine environment may alter the structure and function of the organs of the fetus as well as the expression of genes that impart an increased vulnerability to chronic diseases later in life. Lifestyle interventions initiated during the prenatal period are crucial as there is the potential to attenuate progression towards chronic diseases.

View Article and Find Full Text PDF

Emerging evidence identifies a potent role for aerobic exercise to modulate activity of neurons involved in regulating appetite; however, these studies produce conflicting results. These discrepancies may be, in part, due to methodological differences, including differences in exercise intensity and pre-exercise energy status. Consequently, the current study utilized a translational, well-controlled, within-subject, treadmill exercise protocol to investigate the differential effects of energy status and exercise intensity on post-exercise feeding behavior and appetite-controlling neurons in the hypothalamus.

View Article and Find Full Text PDF

Background: Resistance exercise provides an effective stimulus for improving the metabolic plasticity of skeletal muscle, and the type of acute muscle contraction plays an important role in determining specific responses and adaptations. The purpose of the current investigation was to examine the effect of contraction order on metabolic responses by comparing monophasic concentric and eccentric squats versus a protocol incorporating alternated concentric and eccentric repetitions.

Methods: Twelve recreationally active men (21.

View Article and Find Full Text PDF

Background: Optimal maternal metabolism during pregnancy is essential for healthy fetal growth and development. Chronic exercise is shown to positively affect metabolism, predominantly demonstrated in nonpregnant populations.

Objective: To determine the effects of aerobic exercise on maternal metabolic biomarkers during pregnancy, with expected lower levels of glucose, insulin, and lipids among exercise-trained pregnant women.

View Article and Find Full Text PDF

Key Points: Exercise/exercise training can enhance insulin sensitivity through adaptations in skeletal muscle, the primary site of insulin-mediated glucose disposal; however, in humans the range of improvement can vary substantially. The purpose of this study was to determine if obesity influences the magnitude of the exercise response in relation to improving insulin sensitivity in human skeletal muscle. Electrical pulse stimulation (EPS; 24 h) of primary human skeletal muscle myotubes improved insulin action in tissue from both lean and severely obese individuals, but responses to EPS were blunted with obesity.

View Article and Find Full Text PDF

Skeletal muscle insulin resistance is a hallmark of Type 2 diabetes (T2DM) and may be exacerbated by protein modifications by methylglyoxal (MG), known as dicarbonyl stress. The glyoxalase enzyme system composed of glyoxalase 1/2 (GLO1/GLO2) is the natural defense against dicarbonyl stress, yet its protein expression, activity, and regulation remain largely unexplored in skeletal muscle. Therefore, this study investigated dicarbonyl stress and the glyoxalase enzyme system in the skeletal muscle of subjects with T2DM (age: 56 ± 5 yr.

View Article and Find Full Text PDF