A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Electrical pulse stimulation induces differential responses in insulin action in myotubes from severely obese individuals. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Key Points: Exercise/exercise training can enhance insulin sensitivity through adaptations in skeletal muscle, the primary site of insulin-mediated glucose disposal; however, in humans the range of improvement can vary substantially. The purpose of this study was to determine if obesity influences the magnitude of the exercise response in relation to improving insulin sensitivity in human skeletal muscle. Electrical pulse stimulation (EPS; 24 h) of primary human skeletal muscle myotubes improved insulin action in tissue from both lean and severely obese individuals, but responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and increased AMP accumulation and AMPK Thr phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects.

Abstract: Exercise/muscle contraction can enhance whole-body insulin sensitivity; however, in humans the range of improvements can vary substantially. In order, to determine if obesity influences the magnitude of the exercise response, this study compared the effects of electrical pulse stimulation (EPS)-induced contractile activity upon primary myotubes derived from lean and severely obese (BMI ≥ 40 kg/m ) women. Prior to muscle contraction, insulin action was compromised in myotubes from the severely obese as was evident from reduced insulin-stimulated glycogen synthesis, glucose oxidation, glucose uptake, insulin signal transduction (IRS1, Akt, TBC1D4), and insulin-stimulated GLUT4 translocation. EPS (24 h) increased AMP, IMP, AMPK Thr phosphorylation, PGC1α content, and insulin action in myotubes of both the lean and severely obese subjects. However, despite normalizing indices of insulin action to levels seen in the lean control (non-EPS) condition, responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and EPS increased AMP accumulation and AMPK Thr phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333093PMC
http://dx.doi.org/10.1113/JP276990DOI Listing

Publication Analysis

Top Keywords

severely obese
44
insulin action
28
myotubes severely
24
lean severely
20
obese individuals
16
insulin
13
electrical pulse
12
pulse stimulation
12
enhance insulin
12
insulin sensitivity
12

Similar Publications