Myosin disordered- and super-relaxed states (DRX and SRX, respectively) in skeletal muscle fibers are hypothesized to play key roles in thermogenesis and basal metabolic energy expenditure, raising potential for novel therapeutic targets for obesity and other metabolic diseases. Limited studies have investigated relationships between body composition or biological sex and myosin relaxed states. Using fluorescence-based single-nucleotide turnover, we report quantitative relationships of diet-induced adiposity and sex with biochemical parameters of myosin relaxed states of rodent muscle fibers.
View Article and Find Full Text PDFGlucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composition, metabolism, systemic glucose regulation, muscle glucose transporters, and muscle [H]-2-deoxyglucose uptake ± the GLUT1 inhibitor BAY-876.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
July 2022
Context: Recent preclinical data suggest exercise during pregnancy can improve the metabolic phenotype not only of the mother, but of the developing offspring as well. However, investigations in human offspring are lacking.
Objective: To characterize the effect of maternal aerobic exercise on the metabolic phenotype of the offspring's mesenchymal stem cells (MSCs).
Denervation rapidly induces insulin resistance (i.e., impairments in insulin-stimulated glucose uptake and signaling proteins) in skeletal muscle.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
May 2021
Elevated mitochondrial hydrogen peroxide (HO) emission and an oxidative shift in cytosolic redox environment have been linked to high-fat-diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle β-oxidation flux were studied. In mice overexpressing peroxisome proliferator-activated receptor-α in muscle (MCK-PPARα), lipid-supported mitochondrial respiration, membrane potential (ΔΨ), and HO production rate (HO) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole body glucose intolerance despite an increased rate of energy expenditure.
View Article and Find Full Text PDFSkeletal muscle glucose uptake and glucose metabolism are impaired in insulin resistance. Mechanical overload stimulates glucose uptake into insulin-resistant muscle; yet the mechanisms underlying this beneficial effect remain poorly understood. This study examined whether a differential partitioning of glucose metabolism is part of the mechanosensitive mechanism underlying overload-stimulated glucose uptake in insulin-resistant muscle.
View Article and Find Full Text PDFObjective: Estrogen receptor-α (ERα) is a nuclear receptor family member thought to substantially contribute to the metabolic regulation of skeletal muscle. However, previous mouse models utilized to assess the necessity of ERα signaling in skeletal muscle were confounded by altered developmental programming and/or influenced by secondary effects, making it difficult to assign a causal role for ERα. The objective of this study was to determine the role of skeletal muscle ERα in regulating metabolism in the absence of confounding factors of development.
View Article and Find Full Text PDFAerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism.
View Article and Find Full Text PDF