Peptidoglycan hydrolases facilitate bacterial cell wall growth by creating space for insertion of new material and allowing physical separation of daughter cells. In Escherichia coli, three peptidoglycan amidases, AmiA, AmiB and AmiC, cleave septal peptidoglycan during cell division. The LytM-domain proteins EnvC, NlpD and ActS activate these amidases either from inside the cell or the outer membrane: EnvC binds to the cytoplasmic membrane-anchored divisome components FtsEX, while NlpD and ActS are outer membrane-anchored lipoproteins.
View Article and Find Full Text PDFPeptidoglycan hydrolases facilitate bacterial cell wall growth by creating space for insertion of new material and allowing physical separation of daughter cells. In , three peptidoglycan amidases, AmiA, AmiB and AmiC, cleave septal peptidoglycan during cell division. The LytM-domain proteins EnvC and NlpD activate these amidases either from inside the cell or the outer membrane: EnvC binds to the cytoplasmic membrane-anchored divisome components FtsEX, and NlpD and ActS are outer membrane lipoproteins.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most frequent and aggressive primary brain cancer. The Src inhibitor, TAT-Cx43, exerts antitumor effects in in vitro and in vivo models of GBM. Because addressing the mechanism of action is essential to translate these results to a clinical setting, in this study we carried out an unbiased proteomic approach.
View Article and Find Full Text PDF