Publications by authors named "Ai-Hui Tang"

The Endoplasmic/sarcoplasmic reticulum (ER/SR) is central to calcium (Ca) signaling, yet current genetically encoded Ca indicators (GECIs) cannot detect elementary Ca release events from ER/SR, particularly in muscle cells. Here, we report NEMOer, a set of organellar GECIs, to efficiently capture ER Ca dynamics with increased sensitivity and responsiveness. NEMOer indicators exhibit dynamic ranges an order of magnitude larger than G-CEPIA1er, enabling 2.

View Article and Find Full Text PDF

The precise organization of the complex set of synaptic proteins at the nanometer scale is crucial for synaptic transmission. At the heart of this nanoscale architecture lies the nanocolumn. This aligns presynaptic neurotransmitter release with a high local density of postsynaptic receptor channels, thereby optimizing synaptic strength.

View Article and Find Full Text PDF

Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the role of Kinesin-4 KIF21A in dendritic spine morphology and synaptic plasticity, highlighting its importance in learning and memory.
  • KIF21A is found to localize in certain dendritic spines, which are larger and more adaptive compared to those without it, suggesting a functional significance in neuron communication.
  • The interaction between KIF21A and KANK1 is essential for spine formation; disrupting this interaction impairs cognitive function in rats, indicating KIF21A’s critical role in synaptic functionality.
View Article and Find Full Text PDF

Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission.

View Article and Find Full Text PDF

Huntington's disease (HD) usually causes cognitive disorders, including learning difficulties, that emerge before motor symptoms. Mutations related to lysosomal trafficking are linked to the pathogenesis of neurological diseases, whereas the cellular mechanisms remain elusive. Here, we discover a reduction in the dendritic density of lysosomes in the hippocampus that correlates with deficits in synaptic plasticity and spatial learning in early CAG-140 HD model mice.

View Article and Find Full Text PDF

Mitochondria are in a constant balance of fusion and fission. Excessive fission or deficient fusion leads to mitochondrial fragmentation, causing mitochondrial dysfunction and physiological disorders. How the cell prevents excessive fission of mitochondria is not well understood.

View Article and Find Full Text PDF

Aims: Synaptic strength depends strongly on the subsynaptic organisation of presynaptic transmitter release and postsynaptic receptor densities, and their alterations are expected to underlie pathologies. Although synaptic dysfunctions are common pathogenic traits of Alzheimer's disease (AD), it remains unknown whether synaptic protein nano-organisation is altered in AD. Here, we systematically characterised the alterations in the subsynaptic organisation in cellular and mouse models of AD.

View Article and Find Full Text PDF

Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold).

View Article and Find Full Text PDF

Many crowded biomolecular structures in cells and tissues are inaccessible to labelling antibodies. To understand how proteins within these structures are arranged with nanoscale precision therefore requires that these structures be decrowded before labelling. Here we show that an iterative variant of expansion microscopy (the permeation of cells and tissues by a swellable hydrogel followed by isotropic hydrogel expansion, to allow for enhanced imaging resolution with ordinary microscopes) enables the imaging of nanostructures in expanded yet otherwise intact tissues at a resolution of about 20 nm.

View Article and Find Full Text PDF

The subsynaptic organization of postsynaptic neurotransmitter receptors into nanoclusters that are aligned with presynaptic release sites is essential for the high fidelity of synaptic transmission. However, the mechanisms controlling the nanoscale organization of neurotransmitter receptors in vivo remain incompletely understood. Here, we deconstructed the role of neuroligin-3 (Nlgn3), a postsynaptic adhesion molecule linked to autism, in organizing AMPA-type glutamate receptors in the calyx of Held synapse.

View Article and Find Full Text PDF

Nanoscale organization of presynaptic proteins determines the sites of transmitter release, and its alignment with assemblies of postsynaptic receptors through nanocolumns is suggested to optimize the efficiency of synaptic transmission. However, it remains unknown how these nano-organizations are formed during development. In this study, we used super-resolution stochastic optical reconstruction microscopy (STORM) imaging technique to systematically analyze the evolvement of subsynaptic organization of three key synaptic proteins, namely, RIM1/2, GluA1, and PSD-95, during synapse maturation in cultured hippocampal neurons.

View Article and Find Full Text PDF

Synaptic strength is thought to be determined by the number of presynaptic release sites, release probability and postsynaptic response to quantal release. Changes in these parameters are directly relevant to synaptic plasticity. However, our understanding of these determinants as they relate to synaptic function has been reformed by recent work on nanoscale organizations of synaptic proteins.

View Article and Find Full Text PDF

Recent evidence suggests that nano-organization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this hypothesis. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown.

View Article and Find Full Text PDF

Nanoscale distribution of proteins and their relative positioning within a defined subcellular region are key to their physiological functions. Thanks to the super-resolution imaging methods, especially single-molecule localization microscopy (SMLM), mapping the three-dimensional distribution of multiple proteins has been easier and more efficient than ever. Nevertheless, in spite of the many tools available for efficient localization detection and image rendering, it has been a challenge to quantitatively analyze the 3D distribution and relative positioning of proteins in these SMLM data.

View Article and Find Full Text PDF

Synapses differ markedly in their performance, even amongst those on a single neuron. The mechanisms that drive this functional diversification are of great interest because they enable adaptive behaviors and are targets of pathology. Considerable effort has focused on elucidating mechanisms of plasticity that involve changes to presynaptic release probability and the number of postsynaptic receptors.

View Article and Find Full Text PDF

A complete picture of HIV antigenicity during early replication is needed to elucidate the full range of options for controlling infection. Such information is frequently gained through analyses of isolated viral envelope antigens, host CD4 receptors, and cognate antibodies. However, direct examination of viral particles and virus-cell interactions is now possible via advanced microscopy techniques and reagents.

View Article and Find Full Text PDF

Synaptic transmission is maintained by a delicate, sub-synaptic molecular architecture, and even mild alterations in synapse structure drive functional changes during experience-dependent plasticity and pathological disorders. Key to this architecture is how the distribution of presynaptic vesicle fusion sites corresponds to the position of receptors in the postsynaptic density. However, while it has long been recognized that this spatial relationship modulates synaptic strength, it has not been precisely described, owing in part to the limited resolution of light microscopy.

View Article and Find Full Text PDF

The cleft is an integral part of synapses, yet its macromolecular organization remains unclear. We show here that the cleft of excitatory synapses exhibits a distinct density profile as measured by cryoelectron tomography (cryo-ET). Aiming for molecular insights, we analyzed the synapse-organizing proteins Synaptic Cell Adhesion Molecule 1 (SynCAM 1) and EphB2.

View Article and Find Full Text PDF

The Fmr1 knock-out mouse model of fragile X syndrome (Fmr1(-/y)) has an epileptogenic phenotype that is triggered by group I metabotropic glutamate receptor (mGluR) activation. We found that a membrane-permeable peptide that disrupts mGluR5 interactions with long-form Homers enhanced mGluR-induced epileptiform burst firing in wild-type (WT) animals, replicating the early stages of hyperexcitability in Fmr1(-/y). The peptide enhanced mGluR-evoked endocannabinoid (eCB)-mediated suppression of inhibitory synapses, decreased it at excitatory synapses in WTs, but had no effect on eCB actions in Fmr1(-/y).

View Article and Find Full Text PDF

Activation of muscarinic acetylcholine (ACh) receptors (mAChRs) powerfully affects many neuronal properties as well as numerous cognitive behaviors. Small neuronal circuits constitute an intermediate level of organization between neurons and behaviors, and mAChRs affect interactions among cells that compose these circuits. Circuit activity is often assessed by extracellular recordings of the local field potentials (LFPs), which are analogous to in vivo EEGs, generated by coordinated neuronal interactions.

View Article and Find Full Text PDF

Neuronal electrical oscillations in the theta (4-14 Hz) and gamma (30-80 Hz) ranges are necessary for the performance of certain animal behaviours and cognitive processes. Perisomatic GABAergic inhibition is prominently involved in cortical oscillations driven by ACh release from septal cholinergic afferents. In neocortex and hippocampal CA3 regions, parvalbumin (PV)-expressing basket cells, activated by ACh and glutamatergic agonists, largely mediate oscillations.

View Article and Find Full Text PDF

Extracts from the Cannabis plants, cannabinoids, bind to the same receptors as do endogenous cannabinoids. Although usually found on nerve terminals where their activation inhibits transmitter release, cannabinoid receptors are reported by Bernard et al. to exist on mitochondria, where their activation by endocannabinoids regulates energy metabolism.

View Article and Find Full Text PDF

Acetylcholine (ACh) influences a vast array of phenomena in cortical systems. It alters many ionic conductances and neuronal firing behavior, often by regulating membrane potential oscillations in populations of cells. Synaptic inhibition has crucial roles in many forms of oscillation, and cholinergic mechanisms regulate both oscillations and synaptic inhibition.

View Article and Find Full Text PDF