Antimicrobial resistance (AMR) in Pseudomonas aeruginosa poses a critical global health challenge, with current diagnostics relying on slow, culture-based methods. Here, we present a ML framework leveraging transcriptomic data to predict antibiotic resistance with high accuracy. We applied a genetic algorithm to 414 clinical isolates to identify minimal, highly predictive gene sets (~35-40 genes) distinguishing resistant from susceptible strains for meropenem, ciprofloxacin, tobramycin, and ceftazidime.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2025
Lignin is a universal waste product of the agricultural industry and is currently seen as a potential feedstock for more sustainable manufacturing. While it is the second most abundant biopolymer in the world, most of it is currently burned as it is a very recalcitrant material. Many recent studies, however, have demonstrated the viability of biocatalysis to improve the value of this feedstock and convert it into more useful chemicals, such as polyhydroxybutyrate, and clean fuels like hydrogen and n-butanol.
View Article and Find Full Text PDFDuring aerobic growth, relies on acetate overflow metabolism, a process where glucose is incompletely oxidized to acetate, for its bioenergetic needs. Acetate is not immediately captured as a carbon source and is excreted as waste by cells. The underlying factors governing acetate overflow in have not been identified.
View Article and Find Full Text PDFDuring aerobic growth, relies on acetate overflow metabolism, a process where glucose is incompletely oxidized to acetate, for its bioenergetic needs. Acetate is not immediately captured as a carbon source and is excreted as waste by cells. The underlying factors governing acetate overflow in have not been identified.
View Article and Find Full Text PDFSphingolipids are pivotal for plant development and stress responses. Growing interest has been directed toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its biosynthesis and homeostasis in cell cultures, shedding light on fundamental metabolic mechanisms.
View Article and Find Full Text PDFSphingolipids are pivotal for plant development and stress responses. Growing interest has been directed towards fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its biosynthesis and homeostasis in cell cultures, shedding light on fundamental metabolic mechanisms.
View Article and Find Full Text PDFRhodopseudomonas palustris CGA009 is a Gram-negative purple nonsulfur bacterium that grows phototrophically by fixing carbon dioxide and nitrogen or chemotrophically by fixing or catabolizing a wide array of substrates, including lignin breakdown products for its carbon and fixing nitrogen for its nitrogen requirements. It can grow aerobically or anaerobically and can use light, inorganic, and organic compounds for energy production. Due to its ability to convert different carbon sources into useful products during anaerobic growth, this study reconstructed a metabolic and expression (ME) model of R.
View Article and Find Full Text PDFMetab Eng Commun
June 2022
CGA009 is a metabolically robust microbe that can utilize lignin breakdown products to produce polyhydroxyalkanoates (PHAs), biopolymers with the potential to replace conventional plastics. Our recent efforts suggest PHA granule formation is a limiting factor for maximum production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by The Phap1 phasin () from the PHB-producing model bacterium H16 was expressed in with the aim of overproducing PHBV from the lignin breakdown product coumarate by fostering smaller and more abundant granules. Expression of yielded PHBV production from aerobically (0.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) is a sustainable bioplastic produced by bacteria that is a potential replacement for conventional plastics. This study delivers an integrated experimental and computational modeling approach to decipher metabolic factors controlling PHB production and offers engineering design strategies to boost production. In the metabolically robust Rhodopseudomonas palustris CGA009, PHB production significantly increased when grown on the carbon- and electron-rich lignin breakdown product p-coumarate (CHO) compared to virtually no PHB titer from acetate (CHNaO).
View Article and Find Full Text PDFThe reconstruction and analysis of metabolic models has garnered increasing attention due to the multitude of applications in which these have proven to be practical. The growing number of generated metabolic models has been accompanied by an exponentially expanding arsenal of tools used to analyze them. In this work, we discussed the biological relevance of a number of promising modeling frameworks, focusing on the questions and hypotheses each method is equipped to address.
View Article and Find Full Text PDFPLoS Comput Biol
January 2021
Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple functional and regulatory roles. Different sphingolipid species confer rigidity to the membrane structure, facilitate trafficking of secretory proteins, and initiate programmed cell death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing evidence has pointed to orosomucoid proteins (ORMs) playing a major regulatory role and potentially interacting with a number of components in the pathway, including both enzymes and sphingolipids.
View Article and Find Full Text PDF