Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its biosynthesis and homeostasis in cell cultures, shedding light on fundamental metabolic mechanisms. Employing N isotope labeling and quantitative dynamic modeling approach, we obtained data with notable variations and developed a regularized and constraint-based dynamic metabolic flux analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Despite challenges posed by data variability, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409011PMC
http://dx.doi.org/10.1016/j.isci.2024.110675DOI Listing

Publication Analysis

Top Keywords

cell cultures
8
data variability
8
dynamic modeling
8
deciphering sphingolipid
4
sphingolipid biosynthesis
4
biosynthesis dynamics
4
dynamics cell
4
cultures quantitative
4
quantitative analysis
4
analysis amid
4

Similar Publications

Serine protease inhibitors (SERPINs) are involved in various physiological processes and diseases, such as inflammation, cancer metastasis, and neurodegeneration. Their role in viral infections is poorly understood, as their expression patterns during infection and the range of proteases they target have yet to be fully characterized. Here, we show widespread expression of human SERPINs in response to respiratory virus infections, both in bronchioalveolar lavages from COVID-19 patients and in polarized human airway epithelial cultures.

View Article and Find Full Text PDF

Mammalian mitohormesis: from mitochondrial stressors to organismal benefits.

EMBO J

September 2025

Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720, USA.

A variety of stressors, including environmental insults, pathological conditions, and transition states, constantly challenge cells that, in turn, activate adaptive responses to maintain homeostasis. Mitochondria have pivotal roles in orchestrating these responses that influence not only cellular energy production but also broader physiological processes. Mitochondria contribute to stress adaptation through mechanisms including induction of the mitochondrial unfolded protein response (UPR) and the integrated stress response (ISR).

View Article and Find Full Text PDF

Mumps virus infection triggers early pro-inflammatory responses and impairs Leydig and Sertoli cell function in an ex vivo human testis model.

Hum Reprod

September 2025

Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes-UMR_S1085, Rennes, France.

Study Question: What is the direct effect of mumps virus (MuV) replication within the human testis on the tissue innate immune responses and testicular cell functions?

Summary Answer: MuV induces an early pro-inflammatory response in the human testis ex vivo and infects both Leydig cells and Sertoli cells, which drastically alters testosterone and inhibin B production.

What Is Known Already: Despite widespread vaccination efforts, orchitis remains a significant complication of MuV infection, especially in young men, which potentially results in infertility in up to 87% of patients with bilateral orchitis. Our understanding of MuV pathogenesis in the human testis has been limited by the lack of relevant animal models, impairing the development of effective treatments.

View Article and Find Full Text PDF

Silencing CD151 Gene in Donor Triple-Negative Breast Cancer Cells Attenuates Exosome-Driven Functions of Recipient Cells.

Exp Cell Res

September 2025

Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Sciences, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India. Electronic address:

CD151 is a tetraspanin, abnormally expressed in triple negative breast cancer (TNBC). It is a prominent component of exosomes, facilitating the secretion of proteins that promote metastasis and drug resistance. We have previously demonstrated that silencing the CD151 gene reduces metastasis in TNBC.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.

View Article and Find Full Text PDF