98%
921
2 minutes
20
CGA009 is a metabolically robust microbe that can utilize lignin breakdown products to produce polyhydroxyalkanoates (PHAs), biopolymers with the potential to replace conventional plastics. Our recent efforts suggest PHA granule formation is a limiting factor for maximum production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by The Phap1 phasin () from the PHB-producing model bacterium H16 was expressed in with the aim of overproducing PHBV from the lignin breakdown product coumarate by fostering smaller and more abundant granules. Expression of yielded PHBV production from aerobically (0.7 g/L), which does not occur in the wild-type strain, and led to a significantly higher PHBV titer than wild-type anaerobic production (0.41 g/L). The 3HV fractions were also significantly increased under both anaerobic and aerobic conditions, which boosts thermomechanical properties and potential for application. Thus, heterologous phasin expression in provides flexibility for industrial processing and could foster compositional changes in copolymers with better thermomechanical properties compared to PHB alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741599 | PMC |
http://dx.doi.org/10.1016/j.mec.2021.e00191 | DOI Listing |
Trends Biotechnol
November 2024
Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Ko
We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation.
View Article and Find Full Text PDFJ Biol Chem
August 2024
Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany. Electronic address:
Despite the ever-growing research interest in polyhydroxyalkanoates (PHAs) as green plastic alternatives, our understanding of the regulatory mechanisms governing PHA synthesis, storage, and degradation in the model organism Ralstonia eutropha remains limited. Given its importance for central carbon metabolism, PHA homeostasis is probably controlled by a complex network of transcriptional regulators. Understanding this fine-tuning is the key for developing improved PHA production strains thereby boosting the application of PHAs.
View Article and Find Full Text PDFArch Microbiol
January 2023
Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
Polyhydroxyalkanoate (PHA) is a type of biopolymer produced by most bacteria and archaea, resembling thermoplastic with biodegradability and biocompatibility features. Here, we report the complete genome of a PHA producer, Aquitalea sp. USM4, isolated from Perak, Malaysia.
View Article and Find Full Text PDFInt J Biol Macromol
January 2023
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea. Electronic address:
Phasin is a surface-binding protein of polyhydroxyalkanoate (PHA) granules that is encoded by the phaP gene. As its expression increases, PHA granules become smaller, to increase their surface area, and are densely packed inside the cell, thereby increasing the PHA content. A wide range of PHA-producing bacteria have phaP genes; however, their PHA productivity differs, although they are derived from the cognate bacterial host cell.
View Article and Find Full Text PDFMetab Eng Commun
June 2022
Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
CGA009 is a metabolically robust microbe that can utilize lignin breakdown products to produce polyhydroxyalkanoates (PHAs), biopolymers with the potential to replace conventional plastics. Our recent efforts suggest PHA granule formation is a limiting factor for maximum production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by The Phap1 phasin () from the PHB-producing model bacterium H16 was expressed in with the aim of overproducing PHBV from the lignin breakdown product coumarate by fostering smaller and more abundant granules. Expression of yielded PHBV production from aerobically (0.
View Article and Find Full Text PDF