135 results match your criteria: "Space Engineering University[Affiliation]"

The initial geographic latitude information is the key to the self-alignment of the strapdown inertial navigation system (SINS), but how to determine the latitude when the latitude cannot be obtained directly or in a short time? The latitude determination (LD) methods are introduced, including magnitude method, geometric method, and analytical methods 1 and 2, to solve this situation only by the output of the SINS itself. Simulation and experimental test results validate the efficiency of these LD methods. In order to improve the accuracy of the LD, the error of the LD method is derived through comparative analysis.

View Article and Find Full Text PDF

This paper investigates the performance of a full-duplex (FD) relaying-enabled satellite sensor network under residual loop interference, where the satellite uplink and the downlink transmissions simultaneously occur over the same frequency band. Specifically, the closed-form expressions for the outage probability and ergodic capacity of the FD relaying satellite sensor network are derived by considering residual loop interference, channel statistical property, propagation loss, geometric satellite antenna pattern, and terminal elevation angle. Simulation results show the achieved performance gains of a full-duplex relaying satellite sensor network over traditional half-duplex relaying, and highlight the impact of key system parameters on the performance of the considered FD relaying satellite sensor network.

View Article and Find Full Text PDF

In this paper, the power spectrum resolution problem of dual-frequency coherent mixing signals is analyzed when the Doppler frequency difference is small. The power spectrum function formula of the four optical coherent mixing signals is obtained using statistical theory and the Wiener-Khinchin theorem. The influence of delay time and light source line width on the power spectrum of dual-frequency coherent signals is analyzed using this formula.

View Article and Find Full Text PDF

Compact and highly-confined spoof surface plasmon polaritons with fence-shaped grooves.

Sci Rep

August 2019

Department of Electronic and Optical Engineering, Space Engineering University, Beijing, 101400, China.

In this paper, a compact and highly-confined spoof surface plasmon polaritons (SSPPs) with fence-shaped grooves is proposed. By adding the metal strips that similar to the fence on the basis of T-grooves, the waves can be confined more tightly as the propagation paths of current are effectively increased, which leads to a reduction of the height of SSPPs units by 48.4% compared to the rectangular grooves.

View Article and Find Full Text PDF

A novel satellite target recognition method based on radar data partition and deep learning techniques is proposed in this paper. For the radar satellite recognition task, orbital altitude is introduced as a distinct and accessible feature to divide radar data. On this basis, we design a new distance metric for HRRPs called normalized angular distance divided by correlation coefficient (NADDCC), and a hierarchical clustering method based on this distance metric is applied to segment the radar observation angular domain.

View Article and Find Full Text PDF

A clear image of an observed object may deteriorate into unrecognizable speckle when encountering heterogeneous scattering media, thus it is necessary to recover the object image from the speckle. A method combining least square and semidefinite programming is proposed, which can be used for imaging through scattering media. The proposed method consists of two main stages, that is, media scattering characteristics (SCs) estimation and image reconstruction.

View Article and Find Full Text PDF

In this article, we first investigate secure communications for a two-hop interference channel relay system with imperfect channel estimation in the wireless Internet of Things (IoT), where source-destination pairs communicate simultaneously when an eavesdropper exists. We jointly conceive source, relay and destination matrices upon minimizing total mean-squared error (MSE) of all legitimate destinations while keeping the MSE at eavesdropper above a given threshold. We illuminate that the design of the source, relay and destination matrices is subject to both transmit power constraints and secrecy requirements.

View Article and Find Full Text PDF

Global registration is an important step in the three-dimensional reconstruction of multi-view laser point clouds for moving objects, but the severe noise, density variation, and overlap ratio between multi-view laser point clouds present significant challenges to global registration. In this paper, a multi-view laser point cloud global registration method based on low-rank sparse decomposition is proposed. Firstly, the spatial distribution features of point clouds were extracted by spatial rasterization to realize loop-closure detection, and the corresponding weight matrix was established according to the similarities of spatial distribution features.

View Article and Find Full Text PDF

This paper proposes a radar target detection algorithm based on information geometry. In particular, the correlation of sample data is modeled as a Hermitian positive-definite (HPD) matrix. Moreover, a class of total Jensen-Bregman divergences, including the total Jensen square loss, the total Jensen log-determinant divergence, and the total Jensen von Neumann divergence, are proposed to be used as the distance-like function on the space of HPD matrices.

View Article and Find Full Text PDF

Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H charging line in the HOPE instrument data was developed to better explore intense charging events.

View Article and Find Full Text PDF