35 results match your criteria: "Lethbridge Research and Development Center[Affiliation]"

Plant genebanks contain large numbers of germplasm accessions that likely harbor useful alleles or genes absent in commercial plant breeding programs. Broadening the genetic base of commercial alfalfa germplasm with these valuable genetic variations can be achieved by screening the extensive genetic diversity in germplasm collections and enabling maximal recombination among selected genotypes. In this study, we assessed the genetic diversity and differentiation of germplasm pools selected in northern U.

View Article and Find Full Text PDF

This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early-life exposure, highlighting postnatal factors that work in synergy with maternal factors in further fine-tuning the co-development of the neonatal microbiome and immunity.

View Article and Find Full Text PDF

Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in cattle raised in North America. At the feedlot, cattle are subject to metaphylactic treatment with macrolides to prevent BRD, a practice that may promote antimicrobial resistance and has resulted in an urgent need for novel strategies. is one of the major bacterial agents of BRD.

View Article and Find Full Text PDF

A New Haplotype in the Wheat Fungal Pathogen .

Phytopathology

July 2024

Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia.

The necrotrophic effector ToxA is a well-studied virulence factor produced by several fungal necrotrophs. Initially cloned from the wheat tan spot pathogen in 1996, was found almost a decade later in another fungal pathogen, and its sister species, . In 2018, ToxA was detected in a third wheat fungal pathogenic species, , which causes spot blotch disease.

View Article and Find Full Text PDF

Background: The population structure of crop pathogens such as Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is of interest to researchers looking to understand these pathogens on a molecular level as well as those with an applied focus such as disease epidemiology.

View Article and Find Full Text PDF

The diverse pioneer microbial community colonizing the mammalian gastrointestinal tract is critical for the developing immune system. Gut microbial communities of neonates can be affected by various internal and external factors, resulting in microbial dysbiosis. Microbial dysbiosis during early life affects gut homeostasis by changing metabolic, physiological, and immunological status, which increases susceptibility to neonatal infections and long-term pathologies.

View Article and Find Full Text PDF

ToxA is one of the most studied proteinaceous necrotrophic effectors produced by plant pathogens. It has been identified in four pathogens (, , [formerly f. sp.

View Article and Find Full Text PDF

was described first as a pathogen of wheat (tan spot) in Japan in the 1920s, but, since then, no reports on race structure or its effectors in Japan have been published. In this study, 10 single-spore isolates of were collected from bread wheat in Japan. These isolates were evaluated for virulence on four differential wheat genotypes and tested for the presence/absence of the effector-encoding genes, and , in multiplex PCR assays.

View Article and Find Full Text PDF

Alfalfa ( L.) is the most widely grown perennial leguminous forage and is an essential component of the livestock industry. Previously, the RNAi-mediated down-regulation of alfalfa () was found to lead to increased branching, regrowth and biomass, as well as enhanced drought tolerance.

View Article and Find Full Text PDF

Fusarium head blight (FHB) and Fusarium crown and root rot (FCRR) are major wheat diseases. Populations of FHB and FCRR pathogens are highly dynamic, and shifts in these populations in different regions is reported. Analyzing fungal populations associated with wheat node and grain tissues collected from different regions can provide useful information and predict diseases that might affect subsequent crops and effective disease management practices.

View Article and Find Full Text PDF

Background: Fusarium culmorum is an important pathogen causing head blight of cereals in Europe. This disease is of worldwide importance leading to reduced yield, grain quality, and contamination by mycotoxins. These mycotoxins are harmful for livestock and humans; therefore, many countries have strict regulatory limits for raw materials and processed food.

View Article and Find Full Text PDF

Soybean is threatened by many pathogens that negatively affect this crop's yield and quality, such as various species that cause wilting and root rot diseases. Fusarium root rot (FRR) in soybean can be caused by and other spp. that are associated with Fusarium head blight (FHB) in cereals.

View Article and Find Full Text PDF

Female reproductive output and larval survival were determined for American dog ticks, Dermacentor variabilis (Say), from a recently established population near the northern distributional limit in Saskatchewan (Canada). Oviposition took 10-21 days at 25 °C and 95% relative humidity (RH). Temperature and relative humidity had a marked effect on egg development time and larval survival.

View Article and Find Full Text PDF

Comparison of Habitat Suitability Models for Neumann in North America to Determine Its Potential Geographic Range.

Int J Environ Res Public Health

November 2020

Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.

Neumann, 1901 is a vector of many pathogens of public and veterinary health importance in its native range in East Asia and introduced range in Oceania. In North America, this tick was first detected in New Jersey in 2017. Currently, this tick has been reported from 15 states of the United States.

View Article and Find Full Text PDF

Progression of nasopharyngeal and tracheal bacterial microbiotas of feedlot cattle during development of bovine respiratory disease.

Vet Microbiol

September 2020

Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Simpson Ranch Chair in Beef Cattle Health and Wellness, University of Calgary, Calgary, AB, Canada; Ceva Santé Animale, Libourne, France. Electronic address:

It is generally accepted that as bovine respiratory disease (BRD) develops, bacterial pathogens first proliferate in the nasopharynx and then colonize the lungs, leading to bronchopneumonia. However, such temporal changes have never been definitively demonstrated. Therefore, the objective was to describe the progression of the nasopharyngeal and tracheal bacterial microbiotas of feedlot cattle during development of BRD.

View Article and Find Full Text PDF

is an important fungal pathogen that causes Septoria nodorum blotch (SNB) in wheat. This pathogen produces several necrotrophic effectors that act as virulence factors; three have been cloned, SnToxA, SnTox1, and SnTox3. In this study, and its sister species f.

View Article and Find Full Text PDF

Background: Bacterial bronchopneumonia (BP) is the leading cause of morbidity and mortality in cattle. The nasopharynx is generally accepted as the primary source of pathogenic bacteria that cause BP. However, it has recently been shown in humans that the oropharynx may act as the primary reservoir for pathogens that reach the lung.

View Article and Find Full Text PDF

The respiratory tract of cattle is colonized by complex bacterial ecosystems also known as bacterial microbiotas. These microbiotas evolve over time and are shaped by numerous factors, including maternal vaginal microbiota, environment, age, diet, parenteral antimicrobials, and stressful events. The resulting microbiota can be diverse and enriched with known beneficial bacteria that can provide colonization resistance against bacterial pathogens or, on the contrary, with opportunistic pathogens that can predispose cattle to respiratory disease.

View Article and Find Full Text PDF

Background: Wastewater treatment plants (WWTPs) are considered hotspots for the environmental dissemination of antimicrobial resistance (AMR) determinants. Vancomycin-Resistant Enterococcus (VRE) are candidates for gauging the degree of AMR bacteria in wastewater. Enterococcus faecalis and Enterococcus faecium are recognized indicators of fecal contamination in water.

View Article and Find Full Text PDF

PCR-based single-strand conformation polymorphism (SSCP) analyses combined with DNA sequencing of the prokaryotic 16S ribosomal (r) RNA gene encompassing the hypervariable V4 region was used to determine the bacterial composition of Rocky Mountain wood ticks (Dermacentor andersoni) attached to Richardson's ground squirrels (Urocitellus richardsonii) and questing on vegetation in southern Saskatchewan, Canada. The bacteria present in questing adult ticks from Saskatchewan Landing Provincial Park included Rickettsia peacockii, a Francisella-like endosymbiont (FLE) and an Arsenophonus-like endosymbiont. Bacteria in the adult and nymphal ticks attached to U.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are points of control for the environmental dissemination of antimicrobial resistant bacteria. Vancomycin-resistant enterococci (VRE) were used as indicators of antimicrobial resistance (AMR) in two WWTPs (biologically aerated filter (BAF) and conventional activated sludge (CAS)) in the same municipality. The removal and abundance of enterococci and VRE as well as the species and antimicrobial resistance profiles of VRE were assessed.

View Article and Find Full Text PDF

Recent advances in genome engineering technologies based on designed endonucleases (DE) allow specific and predictable alterations in plant genomes to generate value-added traits in crops of choice. The EXZACT Precision technology, based on zinc finger nucleases (ZFN), has been successfully used in the past for introduction of precise mutations and transgenes to generate novel and desired phenotypes in several crop species. Current methods for delivering ZFNs into plant cells are based on traditional genetic transformation methods that result in stable integration of the nuclease in the genome.

View Article and Find Full Text PDF

The objectives of this study were to assess the effects of Saccharomyces cerevisiae fermentation products (SCFP; NaturSafe, SCFPns; and Original XPC, XPC; Diamond V) on growth performance, carcass traits, immune response, and antimicrobial resistance in beef steers fed high-grain diets. Ninety Angus steers (initial body weight [BW], 533 ± 9.8 kg) were assigned to a randomized complete design with 6 treatments (n = 15/treatment): 1) control, 2) low (12 g SCFPns·steer-1·d-1), 3) medium (15 g SCFPns·steer-1·d-1), 4) high SCFP (18 g SCFPns·steer-1·d-1), 5) encapsulated XPC (eXPC; 7 g XPC·steer-1·d-1 encapsulated with 9 g capsule material), and 6) antibiotics (ANT; 330 mg monensin + 110 mg tylosin·steer-1·d-1).

View Article and Find Full Text PDF

The objective of this study was to determine whether feeding tannin-containing hays to heifers and mature beef cows influences enteric methane (CH4) emissions and nitrogen (N) excretion relative to feeding traditional legume and grass hays. Fifteen mature beef cows (Exp. 1) and 9 yearling heifers (Exp.

View Article and Find Full Text PDF